Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Against the rules: pressure induced transition from high to reduced order

MPG-Autoren
/persons/resource/persons121901

Stefaniu,  Cristina
Emanuel Schneck, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121172

Brezesinski,  Gerald
Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Neuhaus, F., Mueller, D., Tanasescu, R., Stefaniu, C., Zaffalon, P.-L., Balog, S., et al. (2018). Against the rules: pressure induced transition from high to reduced order. Soft Matter, 14(19), 3978-3986. doi:10.1039/C8SM00212F.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-6173-0
Zusammenfassung
Envisioning the next generation of drug delivery nanocontainers requires more in-depth information on the fundamental physical forces at play in bilayer membranes. In order to achieve this, we combine chemical synthesis with physical-chemical analytical methods and probe the relationship between a molecular structure and its biophysical properties. With the aim of increasing the number of hydrogen bond donors compared to natural phospholipids, a phospholipid compound bearing urea moieties has been synthesized. The new molecules form interdigitated bilayers in aqueous dispersions and self-assemble at soft interfaces in thin layers with distinctive structural order. At lower temperatures, endothermic and exothermic transitions are observed during compression. The LC1 phase is dominated by an intermolecular hydrogen bond network of the urea moieties leading to a very high chain tilt of 52[degree]. During compression and at higher temperatures, presumably this hydrogen bond network is broken allowing a much lower chain tilt of 35[degree]. The extremely different monolayer thicknesses violate the two-dimensional Clausius-Clapeyron equation.