Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Structural and Computational Insight into the Catalytic Mechanism of Limonene Epoxide Hydrolase Mutants in Stereoselective Transformations

MPG-Autoren
/persons/resource/persons58440

Bocola,  Marco
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Fachbereich Chemie der Philipps Universität;

/persons/resource/persons137066

Lonsdale,  Richard
Fachbereich Chemie der Philipps Universität;
Research Department Reetz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58919

Reetz,  Manfred T.
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences;
Fachbereich Chemie der Philipps Universität;
Research Department Reetz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sun, Z., Wu, L., Bocola, M., Chan, H. C. S., Lonsdale, R., Kong, X.-D., et al. (2018). Structural and Computational Insight into the Catalytic Mechanism of Limonene Epoxide Hydrolase Mutants in Stereoselective Transformations. Journal of the American Chemical Society, 140(1), 310-318. doi:10.1021/jacs.7b10278.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-6406-8
Zusammenfassung
Directed evolution of limonene epoxide hydrolase (LEH), which catalyzes the hydrolytic desymmetrization reactions of cyclopentene oxide and cyclohexene oxide, results in (R,R)- and (S,S)-selective mutants. Their crystal structures combined with extensive theoretical computations shed light on the mechanistic intricacies of this widely used enzyme. From the computed activation energies of various pathways, we discover the underlying stereochemistry for favorable reactions. Surprisingly, some of the most enantioselective mutants that rapidly convert cyclohexene oxide do not catalyze the analogous transformation of the structurally similar cyclopentene oxide, as shown by additional X-ray structures of the variants harboring this slightly smaller substrate. We explain this puzzling observation on the basis of computational calculations which reveal a disrupted alignment between nucleophilic water and cyclopentene oxide due to the pronounced flexibility of the binding pocket. In contrast, in the stereoselective reactions of cyclohexene oxide, reactive conformations are easily reached. The unique combination of structural and computational data allows insight into mechanistic details of this epoxide hydrolase and provides guidance for future protein engineering in reactions of structurally different substrates.