English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Chemogenomic Profiling of Human and Microbial FK506-Binding Proteins

MPS-Authors
/persons/resource/persons77798

Bracher,  Andreas
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pomplun, S., Sippel, C., Haehle, A., Tay, D., Shima, K., Klages, A., et al. (2018). Chemogenomic Profiling of Human and Microbial FK506-Binding Proteins. Journal of Medicinal Chemistry, 61(8), 3660-3673. doi:10.1021/acs.jmedchem.8b00137.


Cite as: https://hdl.handle.net/21.11116/0000-0001-DC57-6
Abstract
FK506-binding proteins (FKBPs) are evolutionarily conserved proteins that display peptidyl-prolyl isomerase activities and act as coreceptors for immunosuppressants. Microbial macrophage-infectivity-potentiator (Mip)-type FKBPs can enhance infectivity. However, developing druglike ligands for FKBPs or Mips has proven difficult, and many FKBPs and Mips still lack biologically useful ligands. To explore the scope and potential of C5-substituted [4.3.1]-azabicyclic sulfonamides as a broadly applicable class of FKBP inhibitors, we developed a new synthesis method for the bicyclic core scaffold and used it to prepare an FKBP- and Mip-focused library. This allowed us to perform a systematic structure activityrelationship analysis across key human FKBPs and microbial Mips, yielding highly improved inhibitors for all the FKBPs studied. A cocrystal structure confirmed the molecular-binding mode of the core structure and explained the affinity gained as a result of the preferred substituents. The best FKBP and Mip ligands showed promising antimalarial, antileginonellal, and antichlamydial properties in cellular models of infectivity, suggesting that substituted [4.3.1]-aza-bicyclic sulfonamides could be a novel class of anti-infectives.