Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Water formation below silica thin films: Real time observation of a chemical reaction in a physically confined space

MPG-Autoren
/persons/resource/persons179553

Prieto,  Mauricio
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons32777

Klemm,  Hagen
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Gottlob,  Daniel M.
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21866

Menzel,  Dietrich
Chemical Physics, Fritz Haber Institute, Max Planck Society;
Also at Physik-Department E20, Technical University München;

/persons/resource/persons22076

Schmidt,  Thomas
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Prieto, M., Klemm, H., Xiong, F., Gottlob, D. M., Menzel, D., Schmidt, T., et al. (2018). Water formation below silica thin films: Real time observation of a chemical reaction in a physically confined space. Angewandte Chemie International Edition. doi:10.1002/anie.201802000.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-50BD-0
Zusammenfassung
Using low energy electron microscopy and local photoelectron spectroscopy, we investigated the water formation from adsorbed O and H₂ on a Ru(0001) surface covered with a vitreous SiO₂ bilayer (BL) and compared it to the same reaction on bare Ru(0001). In both cases the reaction is characterized by moving reaction fronts. The reason for this might be related with the requirement of site release by O adatoms for further H₂ dissociative adsorption. We find apparent activation energies (E_a^app) for the front motion of 0.59 eV without cover and 0.27 eV under cover. We suggest that the smaller activation energy but higher reaction temperature for SiO₂ BL covered Ru(0001) surface is due to a change of the rate‐determining step. Other possible effects of the cover are discussed. Our results give the first values for E_a^app in confined space, thus leading to potentially new approaches of physical confinement effects on reaction rates, including theoretical modelling.