English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Transition paths in single-molecule force spectroscopy

MPS-Authors
/persons/resource/persons145578

Cossio,  Pilar
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia, Medell´ın, Colombia;

/persons/resource/persons15259

Hummer,  Gerhard
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Cossio, P., Hummer, G., & Szabo, A. (2018). Transition paths in single-molecule force spectroscopy. The Journal of Chemical Physics, 148(12): 123309. doi:https://doi.org/10.1063/1.5004767.


Cite as: https://hdl.handle.net/21.11116/0000-0001-F603-6
Abstract
In a typical single-molecule force spectroscopy experiment, the ends of the molecule of interest are connected by long polymer linkers to a pair of mesoscopic beads trapped in the focus of two laser beams. At constant force load, the total extension, i.e., the end-to-end distance of the molecule plus linkers, is measured as a function of time. In the simplest systems, the measured extension fluctuates about two values characteristic of folded and unfolded states, with occasional transitions between them. We have recently shown that molecular (un)folding rates can be recovered from such trajectories, with a small linker correction, as long as the characteristic time of the bead fluctuations is shorter than the residence time in the unfolded (folded) state. Here, we show that accurate measurements of the molecular transition path times require an even faster apparatus response. Transition paths, the trajectory segments in which the molecule (un)folds, are properly resolved only if the beads fluctuate more rapidly than the end-to-end distance of the molecule. Therefore, over a wide regime, the measured rates may be meaningful but not the transition path times. Analytic expressions for the measured mean transition path times are obtained for systems diffusing anisotropically on a two-dimensional free energy surface. The transition path times depend on the properties both of the molecule and of the pulling device.