日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Single-channel currents recorded from membrane of denervated frog muscle fibres

MPS-Authors
/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

External Resource

https://www.nature.com/articles/260799a0.pdf
(全文テキスト(全般))

https://doi.org/10.1038/260799a0
(全文テキスト(全般))

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Neher, E., & Sakmann, B. (1976). Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature, 260(5554), 799-802. doi:10.1038/260799a0.


引用: https://hdl.handle.net/21.11116/0000-0001-2E47-D
要旨
THE ionic channel associated with the acetylcholine (ACh) receptor at the neuromuscular junction of skeletal muscle fibres is probably the best described channel in biological membranes. Nevertheless, the properties of individual channels are still unknown, as previous studies were concerned with average population properties. Macroscopic conductance fluctuations occurring in the presence of ACh were analysed to provide estimates for single channel conductance and mean open times1–3. The values obtained, however, depended on assumptions about the shape of the elementary conductance contribution—for example, that the elementary contribution is a square pulse-like event2. Clearly, it would be of great interest to refine techniques of conductance measurement in order to resolve discrete changes in conductance which are expected to occur when single channels open or close. This has not been possible so far because of excessive extraneous background noise. We report on a more sensitive method of conductance measurement, which, in appropriate conditions, reveals discrete changes in conductance that show many of the features that have been postulated for single ionic channels.