Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Systematic evaluation of CS‐Rosetta for membrane protein structure prediction with sparse NOE restraints

MPG-Autoren
/persons/resource/persons194653

Reichel,  Katrin
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Center for Theoretical Chemistry, Ruhr‐University Bochum, Bochum, Germany;

/persons/resource/persons15259

Hummer,  Gerhard
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;
Institute of Biophysics, Goethe University, Frankfurt am Main, Germany;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Reichel, K., Fisette, O., Braun, T., Lange, O., Hummer, G., & Schäfer, L. V. (2017). Systematic evaluation of CS‐Rosetta for membrane protein structure prediction with sparse NOE restraints. Proteins: Structure, Function, and Bioinformatics, 85(5), 812-826. doi:https://doi.org/10.1002/prot.25224.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-277E-7
Zusammenfassung
We critically test and validate the CS‐Rosetta methodology for de novo structure prediction of α‐helical membrane proteins (MPs) from NMR data, such as chemical shifts and NOE distance restraints. By systematically reducing the number and types of NOE restraints, we focus on determining the regime in which MP structures can be reliably predicted and pinpoint the boundaries of the approach. Five MPs of known structure were used as test systems, phototaxis sensory rhodopsin II (pSRII), a subdomain of pSRII, disulfide binding protein B (DsbB), microsomal prostaglandin E2 synthase‐1 (mPGES‐1), and translocator protein (TSPO). For pSRII and DsbB, where NMR and X‐ray structures are available, resolution‐adapted structural recombination (RASREC) CS‐Rosetta yields structures that are as close to the X‐ray structure as the published NMR structures if all available NMR data are used to guide structure prediction. For mPGES‐1 and Bacillus cereus TSPO, where only X‐ray crystal structures are available, highly accurate structures are obtained using simulated NMR data. One main advantage of RASREC CS‐Rosetta is its robustness with respect to even a drastic reduction of the number of NOEs. Close‐to‐native structures were obtained with one randomly picked long‐range NOEs for every 14, 31, 38, and 8 residues for full‐length pSRII, the pSRII subdomain, TSPO, and DsbB, respectively, in addition to using chemical shifts. For mPGES‐1, atomically accurate structures could be predicted even from chemical shifts alone. Our results show that atomic level accuracy for helical membrane proteins is achievable with CS‐Rosetta using very sparse NOE restraint sets to guide structure prediction.