English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer

MPS-Authors
/persons/resource/persons132905

Altin,  Abdulrahman
Interface Spectroscopy, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons133176

Krzywiecki,  Maciej
Institute of Physics – CSE, Silesian University of Technology, B. Krzywoustego 2, 44–100 Gliwice, Poland;
Interface Spectroscopy, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons133083

Sarfraz,  Adnan
Interface Spectroscopy, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons136416

Toparli,  Cigdem
Interface Spectroscopy, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125243

Laska,  Claudius Alexander
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons136338

Kerger,  Philipp
Corrosion, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125495

Žeradjanin,  Aleksandar R.
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstraße 3, 91058 Erlangen, Germany;

/persons/resource/persons125274

Mayrhofer,  Karl J. J.
Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany;
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125346

Rohwerder,  Michael
Corrosion, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125132

Erbe,  Andreas
Interface Spectroscopy, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Department of Materials Science and Engineering, NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Altin, A., Krzywiecki, M., Sarfraz, A., Toparli, C., Laska, C. A., Kerger, P., et al. (2018). Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer. Beilstein Journal of Nanotechnology, 9, 936-944. doi:10.3762/bjnano.9.86.


Cite as: https://hdl.handle.net/21.11116/0000-0001-213C-7
Abstract
Corrosion inhibitors are added in low concentrations to corrosive solutions for reducing the corrosion rate of a metallic material. Their mechanism of action is typically the blocking of free metal surface by adsorption, thus slowing down dissolution. This work uses electrochemical impedance spectroscopy to show the cyclic oligosaccharide beta-cyclodextrin (beta-CD) to inhibit corrosion of zinc in 0.1M chloride with an inhibition efficiency of up to 85%. Only a monomolecular adsorption layer of beta-CD is present on the surface of the oxide covered metal, with Raman spectra of the interface proving the adsorption of the intact beta-CD. Angular dependent X-ray photoelectron spectroscopy (ADXPS) and ultraviolet photoelectron spectroscopy (UPS) were used to extract a band-like diagram of the beta-CD/ZnO interface, showing a large energy level shift at the interface, closely resembling the energy level alignment in an n-p junction. The energy level shift is too large to permit further electron transfer through the layer, inhibiting corrosion. Adsorption hence changes the defect density in the protecting ZnO layer. This mechanism of corrosion inhibition shows that affecting the defect chemistry of passivating films by molecular inhibitors maybe a viable strategy to control corrosion of metals.