Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Building a high resolution surface-based human head and torso model for evaluation of specific absorption rates in MRI

MPG-Autoren
/persons/resource/persons19793

Kozlov,  Mikhail
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons23475

Bazin,  Pierre-Louis
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons191767

Kalloch,  Benjamin
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons147461

Weiskopf,  Nikolaus
Department Neurophysics (Weiskopf), MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19864

Möller,  Harald E.
Methods and Development Unit Nuclear Magnetic Resonance, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kozlov, M., Bode, J., Bazin, P.-L., Kalloch, B., Weiskopf, N., & Möller, H. E. (2018). Building a high resolution surface-based human head and torso model for evaluation of specific absorption rates in MRI. In 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). doi:10.1109/COMCAS.2017.8244808.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-1C59-D
Zusammenfassung
We built four prototypes of high resolution surface-based human head models that can be simulated in a reasonable time by a commercially available frequency domain solver-ANSYS HFSS-and evaluated the influence of cerebrospinal fluid and of the upper part of the human torso on field propagation estimates of traveling wave excitation at 297.2 MHz. Combining neighboring triangular faces located in the same plane into a single one is an approach that achieves simulations of high-resolution human models previously not accessible to tetrahedral-mesh-based solvers. If electrical contact between anatomically connected parts of CSF is correctly considered, CSF was found to partially shield brain tissues from the incident RF field.