Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Second-harmonic phonon spectroscopy of α-quartz

MPG-Autoren
/persons/resource/persons173800

Winta,  Christopher
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21548

Gewinner,  Sandy
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22079

Schöllkopf,  Wieland
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21937

Paarmann,  Alexander
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevB.97.094108.pdf
(Verlagsversion), 801KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Winta, C., Gewinner, S., Schöllkopf, W., Wolf, M., & Paarmann, A. (2018). Second-harmonic phonon spectroscopy of α-quartz. Physical Review B, 97(9): 094108. doi:10.1103/PhysRevB.97.094108.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-2653-7
Zusammenfassung
We demonstrate midinfrared second-harmonic generation as a highly sensitive phonon spectroscopy technique that we exemplify using α-quartz (SiO2) as a model system. A midinfrared free-electron laser provides direct access to optical phonon resonances ranging from 350 to 1400cm−1. While the extremely wide tunability and high peak fields of a free-electron laser promote nonlinear spectroscopic studies—complemented by simultaneous linear reflectivity measurements—azimuthal scans reveal crystallographic symmetry information of the sample. Additionally, temperature-dependent measurements show how damping rates increase, phonon modes shift spectrally and in certain cases disappear completely when approaching Tc=846K where quartz undergoes a structural phase transition from trigonal α-quartz to hexagonal β-quartz, demonstrating the technique's potential for studies of phase transitions.