English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONS
  This item is discarded!DetailsSummary

Discarded

Journal Article

GPU-accelerated simulations of isolated black holes

MPS-Authors
/persons/resource/persons213835

Pfeiffer,  Harald
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lewis, A. G. M., & Pfeiffer, H. (2018). GPU-accelerated simulations of isolated black holes. Classical and Quantum Gravity, 35(9): 095017. doi:10.1088/1361-6382/aab256.


Abstract
We present a port of the numerical relativity code SpEC which is capable of running on NVIDIA GPUs. Since this code must be maintained in parallel with SpEC itself, a primary design consideration is to perform as few explicit code changes as possible. We therefore rely on a hierarchy of automated porting strategies. At the highest level we use TLoops, a C++ library of our design, to automatically emit CUDA code equivalent to tensorial expressions written into C++ source using a syntax similar to analytic calculation. Next, we trace out and cache explicit matrix representations of the numerous linear transformations in the SpEC code, which allows these to be performed on the GPU using pre-existing matrix-multiplication libraries. We port the few remaining important modules by hand. In this paper we detail the specifics of our port, and present benchmarks of it simulating isolated black hole spacetimes on several generations of NVIDIA GPU.