Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Coupled multimode optomechanics in the microwave regime

MPG-Autoren
/persons/resource/persons201125

Marquardt,  Florian
Marquardt Group, Associated Groups, Max Planck Institute for the Science of Light, Max Planck Society;
University of Erlangen Nuremberg, Inst Theoret Phys;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Heinrich, G., & Marquardt, F. (2011). Coupled multimode optomechanics in the microwave regime. EPL, 93(1): 18003. doi:10.1209/0295-5075/93/18003.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-D78C-F
Zusammenfassung
The motion of micro- and nanomechanical resonators can be coupled to electromagnetic fields. This allows one to explore the mutual interaction and introduces new means to manipulate and control both light and mechanical motion. Such optomechanical systems have recently been implemented in nanoelectromechanical systems involving a nanomechanical beam coupled to a superconducting microwave resonator. Here, we propose optomechanical systems that involve multiple, coupled microwave resonators. In contrast to similar systems in the optical realm, the coupling frequency governing photon exchange between microwave modes is naturally comparable to typical mechanical frequencies. For instance this enables new ways to manipulate the microwave field, such as mechanically driving coherent photon dynamics between different modes. In particular we investigate two setups where the electromagnetic field is coupled either linearly or quadratically to the displacement of a nanomechanical beam. The latter scheme allows one to perform QND Fock state detection. For experimentally realistic parameters we predict the possibility to measure an individual quantum jump from the mechanical ground state to the first excited state. Copyright (C) EPLA, 2011