Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Protonation-State-Driven Photophysics in Phenothiazinium Dyes: Intersystem Crossing and Singlet-Oxygen Production

MPG-Autoren
/persons/resource/persons217839

Rodriguez-Serrano,  Angela
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Grupo de Bioquímica Teórica Universidad Industrial de Santander Carrera 27;

/persons/resource/persons217844

Tatchen,  Jörg
Research Group Sánchez-García, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rodriguez-Serrano, A., Daza, M. C., Doerr, M., Tatchen, J., & Marian, C. M. (2017). Protonation-State-Driven Photophysics in Phenothiazinium Dyes: Intersystem Crossing and Singlet-Oxygen Production. ChemPhotoChem, 1(10), 459-469. doi:10.1002/cptc.201700069.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-FF89-7
Zusammenfassung
The impact of altering the solvent pH value on the photodynamic activity of thionine has been studied computationally by means of density functional theory and multi‐reference interaction methods. To this end, we have investigated the electronic structure of the ground and excited states of diprotonated (TH22+) and neutral imine (T) forms of thionine (TH+). It is well known experimentally that the T1 state of TH+ undergoes acid–base equilibrium reactions resulting in a pronounced pH effect for the efficiency of singlet‐oxygen (1O2) production. Our results show that the energy‐transfer reactions from the T1 state of TH22+ and T to 3O2 correspond to reversible equilibrium processes, whereas in TH+ this process is very exothermic in a vacuum (−0.66 eV) and in aqueous solution (−0.49 eV). These facts explain the experimental observation of a much smaller efficiency of 1O2 production for TH22+ than for TH+. Moreover, we found that the pH value significantly effected the intersystem crossing (ISC) kinetics impacting the concentration of triplet‐state species available for energy transfer. In very acidic aqueous solution (pH<2) where TH22+ is the prevailing species, the ISC proceeds with a rate constant of ≈108 s−1. In a basic medium where T is the dominant species, ISC decay occurs by means of a thermally activated channel (≈108 s−1) which competes with fluorescence (5.32×107 s−1). According to these results, maximum ISC efficiency is expected for intermediate acidic pH values (TH+, ≈109 s−1).