Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Compositional Abstractions of Interconnected Discrete-Time Stochastic Control Systems

MPG-Autoren
/persons/resource/persons144805

Soudjani,  Sadegh
Group R. Majumdar, Max Planck Institute for Software Systems, Max Planck Society;

/persons/resource/persons144534

Majumdar,  Rupak
Group R. Majumdar, Max Planck Institute for Software Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

arXiv:1709.10312.pdf
(Preprint), 173KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lavaei, A., Soudjani, S., Majumdar, R., & Zamani, M. (2017). Compositional Abstractions of Interconnected Discrete-Time Stochastic Control Systems. Retrieved from http://arxiv.org/abs/1709.10312.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-ED51-A
Zusammenfassung
This paper is concerned with a compositional approach for constructing abstractions of interconnected discrete-time stochastic control systems. The abstraction framework is based on new notions of so-called stochastic simulation functions, using which one can quantify the distance between original interconnected stochastic control systems and their abstractions in the probabilistic setting. Accordingly, one can leverage the proposed results to perform analysis and synthesis over abstract interconnected systems, and then carry the results over concrete ones. In the first part of the paper, we derive sufficient small-gain type conditions for the compositional quantification of the distance in probability between the interconnection of stochastic control subsystems and that of their abstractions. In the second part of the paper, we focus on the class of discrete-time linear stochastic control systems with independent noises in the abstract and concrete subsystems. For this class of systems, we propose a computational scheme to construct abstractions together with their corresponding stochastic simulation functions. We demonstrate the effectiveness of the proposed results by constructing an abstraction (totally 4 dimensions) of the interconnection of four discrete-time linear stochastic control subsystems (together 100 dimensions) in a compositional fashion.