Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Multilevel Monte Carlo Method for Statistical Model Checking of Hybrid Systems

MPG-Autoren
/persons/resource/persons144805

Soudjani,  Sadegh
Group R. Majumdar, Max Planck Institute for Software Systems, Max Planck Society;

/persons/resource/persons144534

Majumdar,  Rupak
Group R. Majumdar, Max Planck Institute for Software Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

arXiv:1706.08270.pdf
(Preprint), 540KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Soudjani, S., Majumdar, R., & Nagapetyan, T. (2017). Multilevel Monte Carlo Method for Statistical Model Checking of Hybrid Systems. Retrieved from http://arxiv.org/abs/1706.08270.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-ED3B-4
Zusammenfassung
We study statistical model checking of continuous-time stochastic hybrid systems. The challenge in applying statistical model checking to these systems is that one cannot simulate such systems exactly. We employ the multilevel Monte Carlo method (MLMC) and work on a sequence of discrete-time stochastic processes whose executions approximate and converge weakly to that of the original continuous-time stochastic hybrid system with respect to satisfaction of the property of interest. With focus on bounded-horizon reachability, we recast the model checking problem as the computation of the distribution of the exit time, which is in turn formulated as the expectation of an indicator function. This latter computation involves estimating discontinuous functionals, which reduces the bound on the convergence rate of the Monte Carlo algorithm. We propose a smoothing step with tunable precision and formally quantify the error of the MLMC approach in the mean-square sense, which is composed of smoothing error, bias, and variance. We formulate a general adaptive algorithm which balances these error terms. Finally, we describe an application of our technique to verify a model of thermostatically controlled loads.