Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Surface Science Approach to Catalyst Preparation Using Thin Oxide Films as Substrates

MPG-Autoren
/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sterrer, M., & Freund, H.-J. (2018). Surface Science Approach to Catalyst Preparation Using Thin Oxide Films as Substrates. In K. Wandelt (Ed.), Encyclopedia of Interfacial Chemistry (pp. 632-642). Amsterdam: Elsevier. doi:10.1016/B978-0-12-409547-2.13751-5.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-E864-A
Zusammenfassung
Finding a suitable catalyst that exhibits high selectivity and high conversion for a given reaction, as well as high stability under typical reaction conditions, is a laborious task and requires systematic optimization of process parameters (feed composition, space velocity, temperature, and pressure) and materials properties (chemical composition and structure/morphology). The latter strongly depend on the catalyst synthesis parameters and the employed catalyst activation procedure. Catalyst preparation is, therefore, one of the most important steps in a catalysts’ life cycle. In this contribution, a surface science approach to catalyst preparation is presented that utilizes thin, single-crystalline oxide films as model substrates for the active metal component, which is deposited from precursor solutions. The use of a conducting substrate allows typical surface science techniques to be applied and to obtain information about various steps of the catalyst preparation, including the structure of the clean support surface, the decomposition pathway of the precursor, and the chemical and catalytic properties of the final model catalyst.