Non-Canonical Hedgehog Signaling Is a Positive Regulator of the WNT Pathway and Is Required for the Survival of Colon Cancer Stem Cells

Graphical Abstract

Highlights

- Patient-derived colon cancer organoids are enriched for cancer stem cells (CSCs)
- Hedgehog signaling in CSCs is non-canonical, SHH dependent, and PTCH1 dependent
- Non-canonical Hedgehog signaling is a positive regulator of WNT signaling
- CSC survival is dependent on HHAT-mediated palmitoylation of SHH

In Brief

Colon cancer is a heterogeneous tumor driven by a subpopulation(s) of therapy-resistant cancer stem cells (CSCs). Regan et al. use 3D culture models to demonstrate that CSC survival is regulated by non-canonical, SHH-dependent, PTCH1-dependent Hedgehog signaling, which acts as a positive regulator of WNT signaling to block CSC differentiation.

Authors

Joseph L. Regan, Dirk Schumacher, Stephanie Staudte, ..., Christian R.A. Regenbrecht, Reinhold Schäfer, Martin Lange

Correspondence

joseph.regan@charite.de (J.L.R.), martin.lange@bayer.com (M.L.)

Data and Software Availability

E-MTAB-5209

Regan et al., 2017, Cell Reports 21, 2813–2828

December 5, 2017 © 2017 The Author(s).
https://doi.org/10.1016/j.celrep.2017.11.025
Non-Canonical Hedgehog Signaling Is a Positive Regulator of the WNT Pathway and Is Required for the Survival of Colon Cancer Stem Cells

Joseph L. Regan,1,2,* Dirk Schumacher,3,4 Stephanie Staudte,1,2 Andreas Steffen,1 Johannes Haybaeck,5,6 Ulrich Keilholz,2 Caroline Schweiger,6 Nicole Golob-Schwarzl,6 Dominik Mumburg,1 David Henderson,1 Hans Lehrach,7 Christian R.A. Regenbrecht,2,6 Reinhold Schäfer,2,3,4 and Martin Lange1,*

1Bayer AG, Drug Discovery, Pharmaceuticals, 13342 Berlin, Germany 2Charité Comprehensive Cancer Center, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany 3Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany 4German Cancer Consortium (DKTK), DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany 5Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Leipziger Straße 44, Haus 28, 39120 Magdeburg, Germany 6Institute of Pathology, Medical University Graz, Auenbruggerplatz 25, 8036 Graz, Austria 7Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany

cpo – cellular phenomics & oncology Berlin-Buch GmbH, Robert-Rössle-Straße 10, 13125 Berlin, Germany

*Correspondence: joseph.regan@charite.de (J.L.R.), martin.lange@bayer.com (M.L.)

https://doi.org/10.1016/j.celrep.2017.11.025

SUMMARY

Colon cancer is a heterogeneous tumor driven by a subpopulation of cancer stem cells (CSCs). To study CSCs in colon cancer, we used limiting dilution spheroid and serial xenotransplantation assays to functionally define the frequency of CSCs in a panel of patient-derived cancer organoids. These studies demonstrated cancer organoids to be enriched for CSCs, which varied in frequency between tumors. Whole-transcriptome analysis identified WNT and Hedgehog signaling components to be enhanced in CSC-enriched tumors and in aldehyde dehydrogenase (ALDH)-positive CSCs. Canonical GLI-dependent Hedgehog signaling is a negative regulator of WNT signaling in normal intestine and intestinal tumors. Here, we show that Hedgehog signaling in colon CSCs is autocrine SHH-dependent, non-canonical PTCH1 dependent, and GLI independent. In addition, using small-molecule inhibitors and RNAi against SHH-palmitoylating Hedgehog acyltransferase (HHAT), we demonstrate that non-canonical Hedgehog signaling is a positive regulator of WNT signaling and required for colon CSC survival.

INTRODUCTION

Colorectal cancer is a heterogeneous tumor that represents the third most common cancer and fourth most common cause of cancer deaths worldwide (Haggar and Boushey, 2009; Siegel et al., 2014). Recent data support a hierarchical model of colon cancer in which tumor growth is driven by a subpopulation of cancer stem cells (CSCs) that may also be the source of relapse following treatment (Reya et al., 2001; Shackleton et al., 2009; Ricci-Vitiani et al., 2007; O’Brien et al., 2007; Vermeulen et al., 2009). Elucidation of the molecular pathways that regulate CSC survival and contribute to tumor heterogeneity may therefore lead to more effective treatments.

Tumors recapitulate many of the cellular programs employed during the development of the tissue of origin (Karamboulas and Alle, 2013; Reya et al., 2001). WNT and Hedgehog signaling frequently operate in unison to control cell growth, development, tissue homeostasis, and cancer (Taipale and Ailles, 2013; Reya et al., 2001). In the intestine, WNT signaling is highest in the stem cell compartment at the crypt base, where it drives stem cell self-renewal, and decreases as cells move up through the intestinal crypt and into the differentiated area at the top of the crypt (Pinto et al., 2003).

Conversely, Hedgehog signaling in the colon is primarily confined to the differentiated cells at the top of the crypt, where it acts to antagonize WNT signaling and restrict its expression to the base of the crypt (Madison et al., 2005). Hedgehog signaling can be classified as either canonical or non-canonical. In canonical Hedgehog signaling, Hedgehog (SHH, IHH, or DHH) binds to its receptor PTCH1, which is also a direct target of Hedgehog signaling (Goodrich et al., 1996; Marigo and Tabin, 1996; Ing- ham, 1998; Kolterud et al., 2009; Scales and de Sauvage, 2009), to relieve it from its repression of SMO, which then activates a downstream signaling pathway, resulting in activation of the GLI family zinc-finger transcription factors GLI1, GLI2, and GLI3. These GLI proteins then translocate to the nucleus, where they regulate the transcription of several target genes. Non-canonical Hedgehog signaling is less well defined but generally refers to Hedgehog-dependent signals that do not act via the canonical Hedgehog-to-GLI route and includes any GLI-independent cellular and tissue responses (Brennan et al., 2012; Thibert et al., 2003; Polizio et al., 2011; Barnes et al., 2001; Testaz et al., 2001; Chinchilla et al., 2010). Two classes
of GLI-independent, non-canonical Hedgehog signaling have been described: type I non-canonical Hedgehog signaling, which works through PTCH1 and is independent of SMO, and type II, which functions through SMO (Brennan et al., 2012). In addition, SMO-independent GLI activation has also been referred to as non-canonical Hedgehog signaling (Petrova et al., 2015; Nolan-Stevaux et al., 2009).

Activating mutations in the WNT signaling pathway are found in 90% of colorectal cancers (Miyaki et al., 1994). Hedgehog genes, on the other hand, are rarely mutated in colorectal cancer (Cancer Genome Atlas Network, 2012) but are, instead, upregulated (Oniscu et al., 2004; Yoshikawa et al., 2009; Berman et al., 2003), and conflicting data suggest either a paracrine (Yauch et al., 2008) or autocrine pathway activation (Varnat et al., 2009). Crosstalk between WNT and Hedgehog signaling has been shown to be important in the development and progression of colon cancer (van den Brink et al., 2004; Van Dop et al., 2009; Akiyoshi et al., 2006; Song et al., 2015; van den Brink and Hardwick, 2006), and there are numerous avenues for molecular crosstalk between the two pathways (Briscoe and Thérond, 2013). Similar to the normal intestine, many studies report GLI-dependent canonical Hedgehog signaling to be a negative regulator of WNT signaling in colon cancer (van den Brink et al., 2004; Van Dop et al., 2009; Akiyoshi et al., 2006). Drugs that target the canonical Hedgehog signaling pathway in colon cancer, where WNT signaling drives proliferation, may therefore prove to be ineffective. Indeed, recent clinical trials in metastatic colorectal cancer and pancreatic cancer (in which Hedgehog ligands are similarly overexpressed) involving the SMO antagonist vismodegib yielded negative results (Berlin et al., 2013; Catenacci et al., 2015). A better understanding of the interactions between Hedgehog and WNT signaling in colorectal cancer may therefore lead to the development of more effective therapies.

Here, using patient-derived 3D in vitro and xenograft models of colon cancer, we show that Hedgehog signaling in CSCs is non-canonical, SHH-dependent, and PTCH1-dependent and acts as a positive regulator of WNT signaling to regulate the survival of colon CSCs.

RESULTS

3D In Vitro Cancer Organoid Models and Xenografts of Colon Cancers Vary in CSC Frequency

Cancer organoid models were established from freshly isolated primary tumors and metastases from colon cancer patients (Table S1) by embedding in growth-factor reduced Matrigel (Figure 1A, top) and cultivating in serum-free medium (Sato et al., 2011; Schütte et al., 2017). To determine the frequency of tumor-initiating cells (TICs) in each model, cells were transplanted into immunocompromised mice at limiting dilution concentrations (Figure 1A). These results demonstrated a broad range of tumorigenic potential among patient models, ranging from 1 in 28,008 (95% confidence interval [CI], 1 in 7,039 to 1 in 111,406) at the lowest to 1 in 56 (95% CI, 1 in 20.6 to 1 in 151) at the highest. The TIC-enriched tumors had an enhanced growth rate compared with tumors with lower TIC frequencies (Figures 1B and 1C; Figure S1). In addition, the most TIC-enriched cancer organoids, 302-CB-M and 195-CB-P, were derived from high-grade stage IVA patient tumors (Figure 1A; Table S1). There was no correlation between major pathway mutations (APC, TP53, KRAS, SMAD4, and PIK3CA) (Table S2) or microsatellite instability, detected in 261-MB-P and 278-ML-P (Schütte et al., 2017), and differences in TIC capacity or growth rate.

The ability of CSCs to survive and form spheroids in non-adherent cell culture is the gold standard assay for the assessment of CSCs in vitro (Ricci-Vitiani et al., 2007; Weiswald et al., 2015). To determine the frequency of CSCs in the cancer organoid models, seven models (281-CB-P, 261-MB-P, 162-MW-P, 151-ML-M, 278-ML-P, 302-CB-M, and 195-CB-P) were distributed by fluorescence-activated cell sorting (FACS) into low-attachment plates and assessed for spheroid formation (Figure 1D). These data showed that the frequency of in vitro CSCs in each cancer organoid model correlated with the frequency of TICs in vivo (Figure 1A) and demonstrate that cancer organoids are functionally heterogeneous and vary in CSC frequency.

CSC Frequency Correlates with Expression of Stem Cell-Associated Genes and Developmental Pathways

To investigate the molecular basis of the differential CSC frequencies, cancer organoid models were stained for the differentiation markers MUC2 and KRT20, the stem cell-associated WNT signaling protein BETA-CATENIN (Figure 2A; Figure S2A; Movies S1 and S2), and the structural protein F-ACTIN. MUC2 and KRT20 staining demonstrated the cancer organoids to be largely undifferentiated, and BETA-CATENIN was found to be strongly expressed in all models. However, differences in nuclear localization of BETA-CATENIN suggested varying levels of WNT signaling activity both within and between tumor models. The localization of F-ACTIN to the apical/luminal surface of the cancer organoids demonstrated that they retain the strong apical-basal polarity of the normal intestine.

RNA sequencing analysis demonstrated further molecular differences between the cancer organoids (Figure 2B). Analysis of stem cell-associated (ALDH1A1, ASCL2, AXIN2, CTNNB1, EPHB2, LRIG1, OLFM4, and PHLDA1) (Douville et al., 2009; Shenoy et al., 2012; Schuijers et al., 2015; Merlos-Suárez et al., 2011; Wong et al., 2012; van der Flier et al., 2009; Sakhthianandeswaran et al., 2011; Huang et al., 2009), proliferation (MKI67 and MYC), and differentiation (ATOH1 and MUC2) (Yang et al., 2001; Shroyer et al., 2007) transcripts demonstrated higher stem cell gene expression in the more CSC-enriched tumors, which also had lower expression of the differentiation markers ATOH1 and MUC2. These data were validated by RT-PCR gene expression analysis (Figure 2C).

To identify pathways that may regulate colon CSCs, gene set enrichment analysis (GSEA) was carried out, comparing CSC-enriched model 195-CB-P to model 162-MW-P, which had a 173-fold reduced TIC frequency compared with model 195-CB-P and failed to form spheroids at low cell number. These analyses demonstrated the transcriptome of 195-CB-P cells to be enriched for gene sets associated with development, including organ development and WNT signaling (Figure 2C; Figure S2). Interestingly, core enrichment analysis of WNT BETA-CATENIN signaling identified the Hedgehog signaling component and...
target gene PTCH1 to be differentially expressed in CSC-enriched 195-CB-P cells.

Hedgehog Signaling in CSC-Enriched Cancer Organoids Is Autocrine and GLI Independent

Hedgehog signaling has been shown to be a negative regulator of WNT signaling (van den Brink et al., 2004; Akiyoshi et al., 2006) and to be inactive in colon cancer cell lines (Chatel et al., 2007). It was therefore surprising to see enrichment for both WNT signaling genes and PTCH1, which is both the receptor for Hedgehog signals and a direct target gene, in the most CSC-enriched tumor model. To further investigate the role of Hedgehog signaling in CSCs, the expression of specific Hedgehog signaling genes was analyzed (Figure 3A and 3C). All models expressed the Hedgehog signaling genes SHH, IHH, and SMO as well as the direct signaling target PTCH1 and downstream...
targets BMP4, BMP7, BMI1, S100A4, and SOX9 (Yoshino et al., 2016; Roberts et al., 1995; Yoshimoto et al., 2012; Wang et al., 2012; Xu et al., 2014; Park et al., 2010; Figure 3A). There were no mutations detected in any Hedgehog signaling components that could lead to constitutive pathway activation (Schütte et al., 2017). Interestingly, the Hedgehog signaling targets tended to be more highly expressed in CSC-enriched models. Notably, expression of GLI1, GLI2, and GLI3, the effectors of canonical Hedgehog signaling, were markedly low (GLI1, 0.322–0.063 fragments per kilobase of transcript per million mapped reads [FPKM]; GLI2, 0.12–0.009 FPKM; GLI3, 0.608–0.004 FPKM). The minimum transcript level for functional expression of a gene is generally considered to be 1 FPKM (Vogel and Marcotte, 2012; Hebenstreit et al., 2011). These data, therefore, suggested that Hedgehog signaling is GLI-independent. To investigate this further, immunostaining of Hedgehog signaling proteins was carried out. Immunostaining of cancer organoids and corresponding xenografts for the Hedgehog signaling proteins SHH, SMO, PTCH1, and BMI1 further demonstrated Hedgehog signaling to be active in these tumors (Figure 3B; Figure S3). In addition, the ubiquitous expression of the Hedgehog ligand SHH and the target gene PTCH1 in all cells demonstrated that Hedgehog signaling in cancer organoids is autocrine. Concurring with the low transcript levels (< 1 FPKM), nuclear GLI1 protein was not detected by immunofluorescence staining in CSC-enriched cancer organoids (Figure 3B; Figure S3). However, it was detected in the CSC-depleted models 281-CB-P and 261-MB-P (Figure S3). Conversely, in vivo, where tumor cells are more differentiated than under the serum-free, undifferentiated conditions of the cancer organoid culture system, GLI1 was localized to the nucleus. However, immunostaining of frozen xenograft sections for GLI1 demonstrated that rare GLI1-negative cells also exist in vivo (Figure 3D; Figure S4). These data suggest that GLI-dependent Hedgehog signaling is required for the differentiation of tumor cells but that GLI-independent Hedgehog signaling, observed in CSC-enriched cancer organoids, may be important for maintaining CSCs in an undifferentiated state.

Colon Cancer Organoids Are Enriched for ALDH^{Positive} CSCs, in which Hedgehog Signaling Is GLI Independent

If the cancer organoids contain a subpopulation of CSCs, then it is possible that GLI transcripts were not detected in the RNA sequencing analysis of the unfraccionated tumor cells. Increased aldehyde dehydrogenase (ALDH) activity, as measured using the Aldefluor assay, is a marker of CSC subpopulations in colon cancer and many other cancer types (Huang et al., 2009; Shenoy et al., 2012; Douville et al., 2009). ALDH^{Positive} and ALDH^{Negative} cells were therefore isolated (Figure 4A) to investigate differences in Hedgehog signaling components between cellular subpopulations. These data demonstrated that the cancer organoids are enriched for ALDH^{Positive} cells and that the frequency of ALDH^{Positive} cells is greatly decreased in vivo (Figure 4B). Limiting dilution serial xenotransplantation assays carried out with ALDH^{Positive} and ALDH^{Negative} cells confirmed that ALDH^{Positive} cells are enriched for CSCs (Figure 4C), which also tended to generate faster-growing tumors than ALDH^{Negative} cells (Figures 4D and 4E). RNA sequencing and GSEA of ALDH^{Positive} and ALDH^{Negative} cells isolated from cancer organoids demonstrated that ALDH^{Positive} CSCs are enriched for WNT and Hedgehog signaling transcripts but lack GLI (Figures 4F and 4G; Figure S5). Gene expression analysis of ALDH^{Positive} and ALDH^{Negative} xenograft cells also demonstrated that in vivo ALDH^{Positive} CSCs are enriched for stem cell (ALDH1A1, BMI1, and EPHB2), WNT (AXIN2, CTNNB1, and LGR5), and Hedgehog transcripts (SHH, PTCH1, and BMP4) but do not express GLI1 (Figure 4H).

Non-canonical Hedgehog Signaling Is a Positive Regulator of WNT

WNT signaling pathway activation leads to the stabilization and nuclear translocation of BETACATENIN, which then complexes with the TCF/LEF transcription factors to activate WNT-responsive genes. Therefore, to further investigate the relationship between WNT and Hedgehog signaling in CSCs, WNT signaling reporter models were generated by transducing cells with a TCF/LEF-EGFP construct (Figure 5A). FACS analysis of TCF/LEF-EGFP cells demonstrated that WNT signaling activity positively correlated with the CSC frequency of the tumor models (Figures 5B and 5C). In addition, ALDH^{Positive} cells were enriched for TCF/LEF-EGFP^{Positive} cells, and this enrichment was also positively correlated with CSC frequency (Figure 5D). Gene expression analysis further demonstrated that TCF/LEF-EGFP^{Positive} cells were enriched for stem cell (ALDH1A1 and ASCL2), WNT (AXIN2, CTNNB1, and LGR5), and Hedgehog (SHH, BMI1, PTCH1, and BMP4) transcripts but not GLI1 (Figure 5E).

To further delineate the role of GLI-independent Hedgehog signaling in colon CSCs and its relationship to WNT, cancer organoids were treated with small-molecule inhibitors of WNT signaling (the Tankyrase inhibitor NVP-TNKS656), WNT-dependent canonical Hedgehog signaling (the Hedgehog acyltransferase [HHAT] inhibitor RU-SKI 43). HHAT-mediated palmitoylation of SHH is required for SHH signaling (Chen et al., 2004). HHAT inhibition therefore blocks all signaling downstream of SHH, including non-canonical SMO-independent PTCH1-dependent Hedgehog signaling. Inhibition of Tankyrase...
Figure 3. Hedgehog Signaling in Colon CSCs Is Autocrine and GLI Independent

(A) RNA sequencing-generated FPKM values for Hedgehog signaling genes. FPKM values for GLI1, GLI2, and GLI3 (red) were less than 1 FPKM (n = 3 separate cell preparations).

(B) Immunofluorescence staining (top) of 195-CB-P cancer organoids for the Hedgehog signaling proteins SHH, SMO, GLI1, PTCH1, BMI1 (green), and F-ACTIN (red) (see also Figure S3). Nuclei are stained blue with DAPI (scale bars, 20 μm). Also shown is immunohistochemistry (bottom) of 195-CB-P xenografts for SHH, SMO, GLI1, PTCH1 and BMI1 (scale bars, 20 μm).

(C) RT-PCR validation of Hedgehog genes (fold expression ± 95% CIs) from three different biological replicates (see also Table S4). Significant differences are as follows: *p < 0.05, **p < 0.01.

(D) Immunofluorescence staining for GLI1 (green) in a frozen 195-CB-P xenograft section (scale bar, 20 μm). Arrowheads indicate nuclear GLI1 staining. The box contains cells lacking nuclear GLI1 staining (see also Figure S4).
and SMO-dependent canonical Hedgehog signaling had no effect on cell survival at low doses (half maximal inhibitory concentration [IC₅₀] values > 10 μM) (Figure 5F). However, RU-SKI 43 effectively reduced cell survival at low doses in all models (IC₅₀ values < 10 μM). Significantly, addition of recombinant SHH to the culture medium blocked the effect of RU-SKI 43 (Figure 5G). These data further demonstrate that Hedgehog signaling is active in colon CSCs and suggest that CSCs are dependent on SMO-independent, PTCH1-dependent, non-canonical Hedgehog signaling for survival.

To determine the effect of Hedgehog signaling pathway inhibition on WNT activity, 151-ML-M TCF/LEF-EGFP cells were treated with either vismodegib or RU-SKI 43 prior to FACS analysis to determine the effect on WNT activity based on changes in GFP. Interestingly, inhibiting SMO-dependent canonical Hedgehog signaling with vismodegib led to an increase in TCF/LEF-EGFPPositive cells (Figures 5H and 5I). However, targeting SHH signaling upstream of SMO and PTCH1 using RU-SKI 43 significantly decreased WNT activity. These data support previous reports that canonical Hedgehog signaling is a negative regulator of WNT activity (van den Brink et al., 2004) and suggest that non-canonical Hedgehog signaling is a positive regulator of WNT.

Non-canonical PTCH1-Dependent Hedgehog Signaling Is Required for the Survival of Colon CSCs

To determine whether non-canonical Hedgehog signaling is functionally required for the survival of CSCs, cells were transduced in non-adherent culture with three different lentiviral short hairpin RNAs (shRNAs) against HHAT (shRNA HHAT 1, shRNA HHAT 2, and shRNA HHAT 3). Successful knockdown of HHAT was confirmed by qRT-PCR (Figures 6A and 7D). With the exception of 278-ML-P and 195-CB-P (shRNA HHAT2), shRNAs against HHAT had little effect on the proliferation of cancer organoid models in Matrigel culture (Figure 6E). These data demonstrate that non-canonical Hedgehog signaling is required for CSC survival and proliferation in non-adherent culture, GFPPositive shRNA HHAT cells were sorted by FACS into ultra-low attachment plates. In all models, shRNA HHAT led to a significant decrease in the frequency of spheroid formation (Figure 6B). The shRNA HHAT spheroids that did form were significantly smaller than control transduced cells (Figures 6C and 6D). Addition of recombinant SHH to the culture medium attenuated the effect of shRNA HHAT on sphere formation (Figure 6E). These data demonstrate that non-canonical Hedgehog signaling is required for CSC survival and that it requires SMO. In addition, these data suggest that the variance in effect on proliferation between RU-SKI 43 (Figure 5F) and shRNA HHAT in adherent cells (Figure 6E) may be due to the preferential loss of more HHAT-dependent cells during transduction in non-adherent culture, leading to a mitigation of the effect on proliferation of cells in adherent culture.

To investigate which of the HHAT downstream Hedgehog signaling components is required for CSC survival, cells were transfected with small interfering RNAs (siRNAs) against SMO and PTCH1 (Figure 6F). siRNA PTCH1 caused a significant decrease in spheroid formation in all models (Figure 6F). However, similar to treatment with SMO inhibitors, siRNAs against SMO had no effect on survival. Taken together, these data demonstrate that colon CSC survival is PTCH1-dependent.

Non-canonical Hedgehog Signaling Regulates the Frequency of Colon CSCs

Having demonstrated that non-canonical Hedgehog signaling is required for the survival of CSCs, we carried out gene expression analysis on shRNA HHAT cancer organoids to investigate the effect on stem cell, WNT, and Hedgehog signaling genes (Figure 6G). HHAT knockdown caused a decrease in expression of the WNT signaling genes AXIN2, CTNNB1, and RUNX2 as well as the Hedgehog signaling genes SHH, SMO, and PTCH1. Of these, AXIN2 and PTCH1, key WNT and Hedgehog target genes (Wu et al., 2012; Ingham, 1998; Marigo and Tabin, 1996; You et al., 2010), were most significantly downregulated. The decreased expression of CTNNB1, which is not a direct target of WNT, is most likely due to the loss of CTNNB1-expressing cells rather than downregulation of its expression. The stem cell-associated genes ALDH1A1, ASCL2, BMI1, and EPHB2 (Meros-Suárez et al., 2011; Douville et al., 2009; Huang et al., 2009; Kreso et al., 2014) also decreased in expression, and of these, ASCL2, the WNT-responsive master regulator of intestinal stem cell fate (Schuijers et al., 2015), was most significantly affected by shRNA HHAT. In addition, FACS analysis of control virus-transduced and shRNA HHAT-transduced cells for ALDH activity demonstrated a decrease in the frequency of

Figure 4. Colon Cancer Organoids Are Enriched for ALDHPositive CSCs that Lack GLI

(A) Representative Aldefluor assay FACS plots of xenografts derived from cancer organoid model 302-CB-M (data are from 10 independent experiments). DEAB (diethylaminobenzaldehyde) is a specific inhibitor of ALDH and is used to control for background fluorescence.

(B) Frequency (± SD) of ALDHPositive cells in cancer organoids and corresponding xenografts (data are from 10 independent experiments, except for 162-MW-P xenografts, which were analyzed in three independent experiments).

(C) The table shows results of limiting dilution serial xenotransplantation of ALDHPositive and ALDHNegative cells from previously established cancer organoid-derived xenograft models. The number of successfully established tumors as a fraction of the number of animals transplanted is given. Data are from three independent transplant sessions. The p values for pairwise tests of differences in CSC frequencies between ALDHPositive versus ALDHNegative cells in 162-MW-P, 151-ML-M, 278-ML-P, 302-CB-M, and 195-CB-P tumors are 8.75 x 10⁻³, 6.47 x 10⁻⁴, 1.12 x 10⁻⁴, 8.02 x 10⁻₁⁵, and 4.72 x 10⁻¹⁷, respectively.

(D and E) Growth curves (D) and Ki67 staining (E) for 10,000 195-CB-P ALDH Negative cells and 1,000 195-CB-P ALDH Positive cells (compared with ALDH Negative cells) from cancer organoid models 162-MW-P, 151-ML-M, 278-ML-P, 302-CB-M, and 195-CB-P (n = 3 separate cell preparations).

(F) GSEA for embryonic development (nominal p = 0), organ development (nominal p = 0), WNT (nominal p = 0), and Hedgehog signaling (nominal p = 0) in ALDHPositive cells (compared with ALDHNegative cells) from cancer organoid models 162-MW-P, 151-ML-M, 278-ML-P, 302-CB-M, and 195-CB-P (n = 3 separate cell preparations).

(G) RNA sequencing-generated FPKM values for AXIN2 and GLI1 in ALDHPositive and ALDHNegative cells (see also Figure S5).

(H) Fold expression of stem cell, WNT, and Hedgehog gene expression data ± 95% CIs in 162-MW-P ALDHPositive xenografts compared with 162-MW-P ALDHNegative xenograft cells (see also Table S4). ***, GLI1 expression was below the limits of detection. Significant differences are as follows: "p < 0.05, "p < 0.01.
ALDH^{positive} cells in shRNA HHAT cancer organoids (Figures 6H and 6I). These data demonstrate that non-canonical Hedgehog signaling regulates the frequency of CSCs in colon cancer.

Non-canonical Hedgehog Signaling Regulates WNT Signaling and the Differentiation of CSCs In Vivo

Limiting dilution xenotransplantation of control virus-transduced and shRNA HHAT-transduced high-grade IVA 195-CB-P and low-grade IIB 278-ML-P cells were carried out to determine whether non-canonical Hedgehog signaling regulates tumorigenesis in vivo. Control virus-transduced cells generated xenografts at each cell dilution tested, but shRNA HHAT-transduced cells were significantly impaired in their ability to generate tumors when transplanted at low cell numbers (Figure 7A). These data demonstrate that impairment of non-canonical Hedgehog signaling in CSCs significantly decreased their tumorigenic capacity. Immunohistochemistry of the shRNA HHAT tumor tissue demonstrated increased lumens formation compared with control tissue (Figure 7B), which, along with the slower growth rate (Figure 7C), suggested that the shRNA HHAT tumors were more differentiated, although there was no increase in staining for the differentiation markers KRT20 or MUC1 (data not shown). qRT-PCR analysis of three of the shRNA HHAT tumors confirmed that shRNA HHAT knockdown was present (Figure 7D). Significantly, WNT signaling gene expression was also found to be decreased. Conversely, the expression of differentiation markers, including the tumor suppressor and WNT target ATOH1 (Bossuyt et al., 2009; Aragaki et al., 2008), was strongly increased. These data demonstrate that non-canonical Hedgehog signaling is a positive regulator of WNT signaling and is required to prevent the differentiation of CSCs in vivo.

PTCH1 Expression Correlates with Stem Cell Genes and WNT Signaling in Clinical Samples and Is Increased in Late-Stage Colorectal Cancers

Gene expression data demonstrated PTCH1 to be enriched in CSC-enhanced cancer organoid models and in ALDH^{positive} CSCs and TCF/LEF^{positive} cellular subpopulations. To determine whether PTCH1 is similarly expressed in patients, we carried out a pairwise correlation comparing the Hedgehog genes SHH, PTCH1, and GLI1 with the stem cell genes EPHB2 and ASCL2, the WNT genes LGR5 and AXIN2, and the differentiation genes ATOH1 and MUC1 (Figure 7E). These data demonstrated that PTCH1 expression is positively correlated with stem cell and WNT signaling genes and negatively correlated with differentiated genes in clinical samples. Significantly, GLI1 expression was negatively correlated with both stem cell and WNT signaling genes.

To further characterize Hedgehog signaling in clinical samples, we carried out immunostaining of colorectal cancer tissue microarrays (Figure 7G; Figure S7). SHH and GLI1 were found to be ubiquitously expressed in epithelial cells and in the stroma, demonstrating that both paracrine and autocrine signaling takes place in vivo. These data support previous studies showing SHH to be ubiquitously expressed and required for the growth of colorectal tumors (Berman et al., 2003; Yoshikawa et al., 2009; Oniscu et al., 2004). PTCH1 staining was generally absent or weak. However, when PTCH1 staining was strong, it positively correlated with strong cytoplasmic and nuclear BETA-CATENIN in serially stained sections.

DISCUSSION

Colon cancer organoids demonstrated both functional and molecular inter- and intratumor heterogeneity, with only a subpopulation of cells within each tumor being tumorigenic. The preserved functional heterogeneity observed within the cancer organoids strongly supports their validity as models for the delineation of signaling pathways important in the regulation of CSCs and tumor biology in general (van de Wetering et al., 2015; Clevers, 2016; Dutta et al., 2017).

The requirement of WNT signaling for the survival of normal and cancer stem cells is well established (Krausova and Korinek, 2014; Nuße, 2006; Kanwar et al., 2010; Vermeulen et al., 2010; Sato et al., 2011). Here we demonstrate that colon cancer organoids are enriched for ALDH^{positive}, WNT-active TCF/LEF-EGFP^{Positive} CSCs and that WNT activity increases with CSC content. Canonical GLI-dependent Hedgehog signaling has been shown to be a negative regulator of WNT signaling both in the normal intestine, where it acts to restrict expansion of the stem cell compartment, and in colon cancer (van den Brink et al., 2004; Van Dop et al., 2009; Madison et al., 2005; Akiyoshi et al., 2006). It was therefore interesting that ALDH^{positive} CSCs...
Figure 6. Non-canonical PTCH1-Dependent Hedgehog Signaling Regulates ALDH⁺ CSC Frequency and Is Required for the Survival of Colon CSCs in Non-adherent Cell Culture

(A) Fold expression of HHAT RT-PCR gene expression data ± 95% CIs in 151-ML-M cancer organoid cells transduced with three different shRNA HHAT-GFP lentiviruses (n = 3 independent cell preparations) over the comparator population (control virus transduced 151-ML-M cells) (see also Table S4).

(B) Frequency of shRNA HHAT spheroid formation in non-adherent cell culture compared with control-transduced cells (mean ± SD; data are from three independent experiments). *p < 0.05, ***p < 0.001 (t test) (see also Figure S6).

(C) shRNA HHAT spheroid size relative to control-transduced cells (mean ± SD; data are from three independent experiments). ns, not significant. **p < 0.01, ***p < 0.001 (t test).

(D) Representative images of a 302-CB-M control-GFP spheroid (left) and shRNA HHAT cells that did not form a spheroid (right) in non-adherent cell culture (scale bars, 100 μm).

(legend continued on next page)
and TCF/LEF-EGFPpositive cells were enriched for both WNT and Hedgehog genes but lacked expression of GLI. In addition, targeting SHH with the HHAT inhibitor RU-SKI 43 and shRNA HHAT caused a decrease in WNT activity and decreased expression of stem cell, WNT, and Hedgehog signaling genes. Given that cancer organoid models are maintained in an undifferentiated state (high ALDHpositive/TCF/LEF-EGFPpositive cell frequencies, MUC2-negative, KRT20-negative, GLI1-negative), with no differentiation factors in the culture medium, and that the in vivo environment promotes differentiation (low ALDHpositive cell frequency, MUC2-positive, KRT20-positive, GLI1-positive), these data support a model wherein non-canonical Hedgehog signaling blocks differentiation and is a positive regulator of WNT.

Treatment of cancer organoids with small-molecule inhibitors and RNAi against the Hedgehog signaling components HHAT, SHH, SMO, and PTCH1 demonstrated that non-canonical Hedgehog signaling is required for CSC survival and is PTCH1-dependent and SMO-independent (type I non-canonical Hedgehog signaling). PTCH1 has been shown to function as a dependence receptor by inducing apoptosis in the absence of SHH ligand (Thibert et al., 2003; Mille et al., 2009; Mehlen and Bredesen, 2004). However, because siRNA PTCH1 also blocked sphere formation in non-adherent cell culture, it is unlikely that the effect on survival caused by loss of SHH through RU-SKI 43 or shRNA HHAT was due to PTCH1 acting as a dependence receptor.

SHH was ubiquitously expressed in cancer organoids and in epithelial and stromal cells in vivo, and the addition of recombinant SHH to RU-SKI 43-treated cancer organoids and shRNA HHAT spheroids attenuated the effect on survival. These data demonstrate that non-canonical Hedgehog signaling in cancer organoids is autocrine but that both paracrine (epithelium to mesenchyme) and autocrine signaling are active in vivo and support previous studies showing SHH to be ubiquitously expressed and required for tumor growth (Berman et al., 2003; Yoshikawa et al., 2009; Oniscu et al., 2004). In addition, PTCH1 expression was found to be enriched both in CSCs and in late-stage T4 colorectal tumors and to positively correlate with stem cell genes and WNT signaling activity in clinical tumor samples. These data support PTCH1 as a potential biomarker for colorectal cancer prognosis.

Based on these data, we propose a model wherein non-canonical PTCH1-dependent Hedgehog signaling acts as a positive regulator of WNT to maintain CSCs in an undifferentiated state, whereas canonical SMO-dependent Hedgehog signaling, mediated by nuclear localization of GLI1, leads to a downregulation of WNT signaling and tumor cell differentiation. Inducing CSC differentiation by targeting non-canonical Hedgehog signaling may therefore provide strategies for the elimination of therapy-resistant CSCs; for example, blocking SHH signaling by targeting HHAT in combination with standard-of-care tumor debulking therapies. Indeed, targeting of HHAT has also been proposed to have therapeutic potential for Hedgehog-dependent pancreatic cancer and breast cancers (Petrova et al., 2015; Matevossian and Resh, 2015).

These data demonstrate that SHH-dependent, PTCH1-dependent, non-canonical Hedgehog signaling is required for the survival of colon CSCs and support HHAT as a possible therapeutic target for the future development of anti-tumor treatments.

EXPERIMENTAL PROCEDURES

Human Tissue Samples and Establishment of Patient-Derived Cancer Organoid Cell Cultures

Tumor material was obtained with informed consent from colorectal cancer patients under approval from the local Institutional Review Board of Charité University Medicine (Charité Ethics, Charitéplatz 1, 10117 Berlin, Germany) and the ethics committee of the Medical University of Graz (Ethics Commission of the Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria), confirmed by the ethics committee of the St John of God Hospital Graz (23-015 ex 10/11). Tumor staging was carried out by experienced and board-certified pathologists (Table S1). Cancer organoid cultures were established and propagated as described by Schutte et al. (2017).

Limiting Dilution Xenotransplantation

Housing and handling of animals were in compliance with the European and German Guidelines for Laboratory Animal Welfare. Animal experiments were conducted in accordance with animal welfare laws, approved by local authorities, and in accordance with the ethical guidelines of Bayer. Cancer organoids were processed to single cells, and live cells were then injected subcutaneously in PBS and Matrigel (1:1 ratio) at limiting cell dilutions into female 8- to 10-week-old nude −/− mice. For serial xenotransplantation studies, tumors derived from limiting dilution transplants were processed to single cells and sorted by FACS (BD FACs Aria II) for ALDH activity (Aldefluor assay) and DAPI to exclude dead cells. Cells were then re-transplanted at limiting dilutions.

Statistical Analysis

GraphPad Prism 6.0 was used for data analysis and imaging. All data are presented as the means ± SD, followed by determining significant differences using two-tailed t test. The significance of RT-PCR data was determined by inspection of error bars as described by Cumming et al. (2007). Limiting dilution frequency and probability estimates were analyzed by the single-hit Poisson model and pairwise tests for differences in stem cell frequencies using the ELDA software (http://bioinf.wehi.edu.au/software/elda/index.html; Hu and Smyth, 2009). GSEA was carried out using the preranked feature of the Broad Institute GSEA software version 2 using msigdb v5.1 gene sets (Subramanian et al., 2005; Mootha et al., 2003). The ranking list was derived from the fold changes calculated from the differential gene expression calculation.
and nominal p values, p < 0.05 was considered statistically significant. Pairwise correlations were analyzed with Pearson correlation test.

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA sequencing data reported in this paper is ArrayExpress: E-MTAB-5209.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, seven figures, four tables, and two movies and can be found with this article online at https://doi.org/10.1016/j.celrep.2017.11.025.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We thank Ralf Lesche and Joern Toedling (Bayer AG, Berlin, Germany) for support with RNA sequencing; Elisaveta Petrova (Merck, Germany) and Marie-Laure Yapiro (Max Planck Institute for Molecular Genetics, Berlin, Germany) for helpful discussions and comments on the manuscript; and Tribaud Jourdian (Bayer AG, Berlin, Germany), Dorothea Przybilla, and Cathrin Davies (Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, Germany) for technical and cell culture assistance. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under Grant Agreement 115234 (OncoTrack), the resources of which are composed of financial contribution from the European Union Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution. J.L.R., A.S., D.M., D.H., and M.L. are employees or shareholders of Bayer AG. H.L. is the founder of Alacris Theranostics. R.S. and C.R.A.R. are contributors. J.L.R., A.S., D.M., D.H., and M.L. are employees or shareholders of Bayer AG. H.L. is the founder of Alacris Theranostics. R.S. and C.R.A.R. are founders of cpo.

Received: July 12, 2017
Revised: August 15, 2017
Accepted: November 6, 2017
Published: December 5, 2017

REFERENCES

Figure 7. Non-canonical Hedgehog Signaling Is Required for Tumorigenesis and Regulates the Differentiation of Colon CSCs In Vivo

(A) The table shows results of limiting dilution transplantation of control virus-transduced and shRNA HHAT-transduced 195-CB-P and 278-ML-P cells. The number of established tumors as a fraction of the number of animals transplanted is given. The p values for pairwise tests of differences in TIC frequencies between control virus versus shRNA HHAT 1, shRNA HHAT 2, and shRNA HHAT 3 278-ML-P cells are 3.72 x 10^-3, 4.53 x 10^-3, and 6.9 x 10^-3, respectively, and in 195-CB-P cells are 3.72 x 10^-10, 1.22 x 10^-5, and 1.23 x 10^-5, respectively. (B) H&E staining of control and shRNA HHAT tissue (scale bar, 100 µm).

(C) Growth curves for xenografts derived from control virus-transduced cells and shRNA HHAT-transduced cells.

(D) Fold expression of HHAT, WNT, and differentiation RT-PCR gene expression data ± 95% CIs in four separate 195-CB-P shRNA HHAT tumors over the comparator population (four control virus-transduced 195-CB-P xenografts) (see also Table S4). Significant differences are as follows: *p < 0.05, **p < 0.01.

(E) Pairwise correlation of Hedgehog genes (SHH, PTCH1, and GLI1) with stem cell genes (EPHB2 and ASCL2), WNT genes (LGR5 and AXIN2), and differentiation genes (ATOH1 and MUC1) in clinical samples.

(F) Expression of PTCH1 in colorectal cancer patients across different tumor stages (T1 v T4, p = 0.03).

(G) Immunostaining of a stage IIA primary patient colorectal tumor for SHH, GLI1, PTCH1, BETA-CATENIN, EPHB2, and MUC2 (scale bar, 200 µm) (see also Figure S7).

Supplemental Information

Non-Canonical Hedgehog Signaling Is a Positive Regulator of the WNT Pathway and Is Required for the Survival of Colon Cancer Stem Cells

Joseph L. Regan, Dirk Schumacher, Stephanie Staudte, Andreas Steffen, Johannes Haybaeck, Ulrich Keilholz, Caroline Schweiger, Nicole Golob-Schwarzl, Dominik Mumberg, David Henderson, Hans Lehrach, Christian R.A. Regenbrecht, Reinhold Schäfer, and Martin Lange
Supplemental Experimental Procedures

Histology and immunohistochemistry
Tumors were fixed in 4% paraformaldehyde overnight for routine histological analysis and immunohistochemistry. Immunohistochemistry was carried out via standard techniques with MKI67 (HPA001164, rabbit polyclonal, Sigma; diluted 1:250), SHH (NBP1-69270, rabbit polyclonal, Novusbio, diluted 1:50), SMO (ab38686, rabbit polyclonal, Abcam, diluted 1:120), BMI1 (#6964, rabbit monoclonal, Cell Signaling Technology; diluted 1:400), GLI1 (ab49314, rabbit polyclonal, Abcam, diluted 1:250), Non-phospho (Active) β-Catenin (#8814, rabbit monoclonal, Cell Signaling, diluted 1:800), EPHB2 (PA5-14607, rabbit polyclonal, Thermo Fisher, 1:200), PTCH1 (NBP1-47945, mouse monoclonal, Novus, 1:200), BMI1 (#6964, rabbit monoclonal, Cell Signaling Technology; diluted 1:200), and MUC2 (#2900-1, rabbit monoclonal, Epitomics, 1:500) antibodies. Negative controls were performed using the same protocols with substitution of the primary antibody with IgG-matched controls (ab172730, rabbit IgG, monoclonal [EPR25A], Abcam and ab91353, mouse IgG1 monoclonal [ICIGG1], Abcam isotype controls). Tissue microarrays containing samples from 75 colorectal cancer patients from the OncoTrack cohort [1] were obtained from The Institute of Pathology, Medical University Graz (Auenbruggerplatz 25, 8036, Graz, Austria) and analyzed using Aperio TMALab and Image software (Leica Biosystems).

Immunofluorescence staining of cancer organoids
For immunofluorescence imaging, cancer organoid cultures were fixed in 4% paraformaldehyde for 30 min at room temperature and permeabilized with 0.1% Triton X-100 for 30 min. Samples were blocked in phosphate-buffered saline (PBS) with 10% bovine serum albumin (BSA). Samples were incubated with primary antibodies overnight at 4°C. Antibodies used were Non-phospho (Active) β-Catenin (Ser33/37/Thr41) (D13A1) (#8814, rabbit monoclonal, Cell Signaling Technology; diluted 1:200), KRT20 (HPA024684, rabbit polyclonal, Sigma; diluted 1:200), SHH (NBP1-69270, rabbit polyclonal, Novus Biologicals; diluted 1:200), SMO (ab38686, rabbit polyclonal, Abcam; diluted 1:200), BMI1 (D20B7) XP® (#6964, rabbit monoclonal, Cell Signaling Technology; diluted 1:200), GLI1 (ab49314, rabbit polyclonal, Abcam; diluted 1:200) and PTCH1 (5c7) (NBP1-47945, mouse monoclonal, Novus Biologicals; 1:100). Samples were stained with a conjugated secondary antibody overnight at 4 °C. F-actin was stained with Alexa Fluor® 647 Phalloidin (#A22287, Thermo Fisher; diluted 1:20) for 30 min at room temperature. Nuclei were counterstained with DAPI. Negative controls were performed using the same protocol with substitution of the primary antibody with IgG-matched controls. Cancer organoids were then transferred to microscope slides for examination using a Zeiss LSM 700 Laser Scanning Microscope.

Limiting dilution spheroid assays
Cancer organoids were dissociated to single cells and sorted by FACS, using DAPI to exclude dead cells, into 96-well ultra-low attachment plates. 20 days later, wells containing spheroids were counted and used to calculate the CSC frequency using the ELDA software. ImageJ software was used to calculate sphere size. For shRNA HHAT spheroid assays, transduced cancer organoids were dissociated and live (DAPI Negative GFP Positive) cells were sorted at 100 cells per well into 96-well ultra-low attachment plates. For siRNA spheroid assays, live (DAPI Negative) cells were sorted at 10 cells per well into 96-well ultra-low attachment plates.

Aldefluor Assay
Organoids and xenografts were processed to single cells and labelled using the Aldefluor Assay according to manufacturer’s (Stemcell Technologies) instructions. GFP expressing cells were labelled using the AldeRed (a red-shifted fluorescent substrate for ALDH used for labelling viable ALDH positive cells that does not interfere with the GFP emission channel) ALDH Detection Assay (SCR150, Merck Millipore). ALDH levels were assessed by FACS on a BD LSR II analyzer.

RNA Sequencing
Cells were lysed in RLT buffer and processed for RNA using the RNeasy Mini Plus RNA extraction kit (Qiagen). Samples were processed using Illumina’s TrueSeq RNA protocol and sequenced on an Illumina HiSeq 2500 machine as 2x125nt paired-end reads. The raw data in Fastq format were checked for sample quality using our internal NGS
QC pipeline. Reads were mapped to the human reference genome (assembly hg19) using the STAR aligner (version 2.4.2a). Total read counts per gene were computed using the program “featureCounts” (version 1.4.6-p2) in the “subread” package, with the gene annotation taken from Gencode (version 19). The “DESeq2” Bioconductor package was used for the differential-expression analysis.

Small molecule inhibitor studies
Cancer organoids were dissociated to single cells and seeded in 10 μl Matrigel at 5 x 10^3 cells per well in 96-well plates and pre-cultured for 2 days to allow organoid formation prior to compound treatment. Cancer organoids were then treated with tankyrase (NVP-TNKS656), vismodegib, cyclopamine, RU-SKI 43 and 2 μg/ml recombinant human SHH (R&D Systems). Cell viability was determined using the CellTiter-Glo (Promega) cell viability assay after 72 h compound treatment.

Viral transduction
Cells were seeded in 100 μl volumes of antibiotic free culture media at 1 x 10^5 cells per well in ultra-low attachment 96-well plates. Control and shRNA lentiviruses were purchased from Sigma-Aldrich (Table S3). Viral particles were added at a multiplicity of infection of 1. Cells were transduced for up to 96 h or until GFP positive cells were observed before being embedded in Matrigel for the establishment of lentiviral transduced cancer organoid cultures. Puromycin (2 μg/ml) was used keep the cells under selection.

TCF/LEF-eGFP reporter assay
Lenti TCF/LEF reporter (Qiagen) is a preparation of replication incompetent, VSV-g pseudotyped lentivirus particles expressing the GFP gene under the control of a minimal (m)CMV promoter and tandem repeats of the TCF/LEF transcriptional response element (TRE). For the reporter assay, TCF/LEF-eGFP cancer organoids were pre-treated with 10 μM vismodegib or 2 μM RU-SKI 43 for 24 h. Control cells were incubated with equivalent concentrations of DMSO. Cancer organoids were then processed to single cells, stained for DAPI to exclude dead cells and analyzed by flow cytometry using the BD LSR II.

siRNA transfection
Single cells were seeded in 100 μl volumes of Accell™ Delivery Media (Dharmacon™) at 1 x 10^5 cells per well in ultra-low attachment 96-well plates and transfected with 2 μM concentrations of Accell™ siRNA SMO (E-005726-00-0005), siRNA PTCH1 (E-003924-00-0005) and control siRNA (Accell™ non-targeting siRNA control) (Dharmacon™) by incubating for up to 72 h.

Gene expression analysis
For quantitative real-time RT-PCR analysis RNA was isolated using the RNeasy Mini Plus RNA extraction kit (Qiagen). cDNA synthesis was carried out using a Sensiscript RT kit (Qiagen). RNA was transcribed into cDNA using an oligo dTn primer (Promega) per reaction. Gene expression analysis was performed using TaqMan® Gene Expression Assays (Applied Biosystems) (Table S4) on an ABI Prism 7900HT sequence detection system (Applied Biosystems). GAPDH was used as an endogenous control and results were calculated using the Δ-AΔCt method. Data were expressed as the mean fold gene expression difference in three independently isolated cell preparations over a comparator sample with 95% confidence intervals. Pairwise correlation studies were performed using the colorectal adenocarcinoma gene expression TCGA-COADREAD dataset (www.eBioPortal.org) including 382 patients with RNA-sequencing and clinical data.
Figure S1 Limiting dilution tumor growth curves. Related to Figure 1.

Growth curves for nine xenograft models derived from 100, 1,000 and 10,000 cell dilution transplants.
Figure S2 CSC-enriched organoids have transcriptomes enriched for developmental gene sets. Related to Figure 2.

(A) Immunofluorescence staining of cancer organoids for pan-differentiation marker KRT20 (green) and F-ACTIN (red). Nuclei are stained blue with DAPI (Bars = 20 µm) (B) GSEA plots for ectoderm, epidermis, placental and tissue development and (C) list of gene sets enriched in CSC-enhanced 195-CB-P cancer organoids compared to CSC-depleted 162-MW-P cancer organoids. (D) Heat map showing core enrichment Hallmark Hedgehog signaling genes in 195-CB-P cells compared to 162-MW-P cells.
Figure S3 Hedgehog signaling in CSC-enriched colon cancer organoids is autocrine and GLI-independent. Related to Figure 3.

Immunostaining of cancer organoids for Hedgehog signaling proteins SHH, SMO, GLI1, PTCH1 and BMI1 (green) and F-ACTIN (red). Nuclei are stained blue with DAPI (Bars = 20 µm).
Figure S4 Nuclear GLI1 is not expressed at the base of “crypt-like” structures found in patient derived colon cancer xenografts. Related to Figure 3.

Immunofluorescence staining for GLI1 (green) in “crypt-like” structures in frozen 195-CB-P xenograft sections. Nuclei are stained blue with DAPI. Arrowheads indicate nuclear GLI1 staining. Boxes contain cells lacking nuclear GLI1 staining (Bars = 20 µm).
Figure S5 RNA sequencing generated FPKM values for *SHH, PTCH1, BMP4, GLI2 and GLI3* in ALDH^{Positive} and ALDH^{Negative} cancer organoid cells. Related to Figure 4.
Figure S6 Viability of shRNA HHAT cancer organoids and demonstration of siRNA knockdown. Related to Figure 6.

(A) Proliferation of shRNA HHAT cancer organoids in adherent Matrigel culture compared to control cells after 6 days (mean ± SD; data from two independent experiments). ns = not significant; *p-value < 0.05; **p-value < 0.001 (t test). (B) Fold expression of SMO and PTCH1 (±95% confidence intervals) in siRNA SMO and siRNA PTCH1 transfected cancer organoids from two independent experiments. Significant differences are *p-value < 0.05; **p-value < 0.01 and were determined by inspection of error bars as described by Cumming et al. (2007) [2].
Figure S7 Immunostaining of tissue microarrays of normal intestinal mucosa and colorectal cancer patient samples for SHH, GLI1, PTCH1, BETA-CATENIN, Ki67, EPHB2 and MUC2 (Bars = 200 µm). Related to Figure 7.
<table>
<thead>
<tr>
<th>Patient Model</th>
<th>Origin</th>
<th>TNM stage</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>261-CB-P</td>
<td>Transverse colon</td>
<td>T3 N0 M0</td>
<td>IIA</td>
</tr>
<tr>
<td>261-MB-P</td>
<td>Ascending colon</td>
<td>T2 N0 M0</td>
<td>I</td>
</tr>
<tr>
<td>162-MW-P</td>
<td>Sigmoid colon & descending colon</td>
<td>T3 N0 M0</td>
<td>IIA</td>
</tr>
<tr>
<td>159-MB-P</td>
<td>Sigmoid colon</td>
<td>T3 N2a M0</td>
<td>IIIB</td>
</tr>
<tr>
<td>238-CB-P</td>
<td>Sigmoid colon</td>
<td>T3 N0 Mx, M0</td>
<td>IIA</td>
</tr>
<tr>
<td>151-ML-M</td>
<td>Liver</td>
<td>T2 N0 M0, M1a</td>
<td>IVA</td>
</tr>
<tr>
<td>278-ML-P</td>
<td>Sigmoid colon & descending colon</td>
<td>T4a N0 M0</td>
<td>IIB</td>
</tr>
<tr>
<td>302-CB-M</td>
<td>Liver</td>
<td>T3 N1a M1a</td>
<td>IVA</td>
</tr>
<tr>
<td>195-CB-P</td>
<td>Sigmoid colon</td>
<td>T4a N2b M1a</td>
<td>IVA</td>
</tr>
</tbody>
</table>

Table S1 Tissue Origin and TNM Classification of Malignant Tumors (TNM). Related to Figure 1.

T: primary tumor size, N: regional lymph nodes involved, M: distant metastasis
Table S2 List of major pathway mutations. Related to Figure 1.

<table>
<thead>
<tr>
<th>Patient Model</th>
<th>Gene</th>
<th>Description</th>
<th>Alteration</th>
<th>Amino acid exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>281-CB-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>SNV_stopgain SNV</td>
<td>E1370X</td>
</tr>
<tr>
<td>281-CB-P</td>
<td>PTEN</td>
<td>phosphatase and tensin homolog</td>
<td>SNV_stopgain SNV</td>
<td>R233X</td>
</tr>
<tr>
<td>261-MB-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>Indel_frameshift deletion</td>
<td>1462_1462del</td>
</tr>
<tr>
<td>261-MB-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>Indel_frameshift deletion</td>
<td>E1547fs</td>
</tr>
<tr>
<td>261-MB-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>SNV_nonsynonymous SNV</td>
<td>A2690E</td>
</tr>
<tr>
<td>261-MB-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>SNV_stopgain SNV</td>
<td>E140X</td>
</tr>
<tr>
<td>261-MB-P</td>
<td>BRAF</td>
<td>v-raf murine sarcoma viral oncogene homolog B1</td>
<td>SNV_nonsynonymous SNV</td>
<td>V600E</td>
</tr>
<tr>
<td>261-MB-P</td>
<td>PMS2</td>
<td>PMS2 postmeiotic segregation increased 2</td>
<td>SNV_nonsynonymous SNV</td>
<td>V761I</td>
</tr>
<tr>
<td>162-MW-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>SNV_stopgain SNV</td>
<td>Q1406X</td>
</tr>
<tr>
<td>162-MW-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>SNV_stopgain SNV</td>
<td>R876X</td>
</tr>
<tr>
<td>162-MW-P</td>
<td>PIK3CA</td>
<td>phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha</td>
<td>SNV_nonsynonymous SNV</td>
<td>H1047R</td>
</tr>
<tr>
<td>162-MW-P</td>
<td>PIK3CA</td>
<td>phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha</td>
<td>SNV_nonsynonymous SNV</td>
<td>R88Q</td>
</tr>
<tr>
<td>162-MW-P</td>
<td>MSH6</td>
<td>mutS homolog 6</td>
<td>SNV_nonsynonymous SNV</td>
<td>E948K</td>
</tr>
<tr>
<td>162-MW-P</td>
<td>SMAD4</td>
<td>SMAD family member 4</td>
<td>SNV_nonsynonymous SNV</td>
<td>D351Y</td>
</tr>
<tr>
<td>159-MB-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>SNV_stopgain SNV</td>
<td>Q1294X</td>
</tr>
<tr>
<td>159-MB-P</td>
<td>SMAD4</td>
<td>SMAD family member 4</td>
<td>Indel_frameshift deletion</td>
<td>142_143del</td>
</tr>
<tr>
<td>159-MB-P</td>
<td>TP53</td>
<td>tumor protein p53</td>
<td>Indel_frameshift deletion</td>
<td>152_156del</td>
</tr>
<tr>
<td>159-MB-P</td>
<td>KRAS</td>
<td>v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog</td>
<td>SNV_nonsynonymous SNV</td>
<td>G13D</td>
</tr>
<tr>
<td>238-CB-P</td>
<td>KRAS</td>
<td>v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog</td>
<td>SNV_nonsynonymous SNV</td>
<td>G12D</td>
</tr>
<tr>
<td>238-CB-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>Indel_frameshift deletion</td>
<td>N505fs</td>
</tr>
<tr>
<td>238-CB-P</td>
<td>TP53</td>
<td>tumor protein p53</td>
<td>SNV_nonsynonymous SNV</td>
<td>R273H</td>
</tr>
<tr>
<td>151-ML-M</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>Indel_frameshift deletion</td>
<td>606_605del</td>
</tr>
<tr>
<td>151-ML-M</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>Indel_frameshift insertion</td>
<td>I1307fs</td>
</tr>
<tr>
<td>151-ML-M</td>
<td>NRAS</td>
<td>neuroblastoma RAS viral (v-ras) oncogene homolog</td>
<td>SNV_nonsynonymous SNV</td>
<td>Q61K</td>
</tr>
<tr>
<td>151-ML-M</td>
<td>TP53</td>
<td>tumor protein p53</td>
<td>SNV_nonsynonymous SNV</td>
<td>G266E</td>
</tr>
<tr>
<td>278-ML-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>Indel_frameshift deletion</td>
<td>K586fs</td>
</tr>
<tr>
<td>278-ML-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>SNV_stopgain SNV</td>
<td>Q223X</td>
</tr>
<tr>
<td>278-ML-P</td>
<td>TP53</td>
<td>tumor protein p53</td>
<td>SNV_nonsynonymous SNV</td>
<td>R273C</td>
</tr>
<tr>
<td>278-ML-P</td>
<td>PMS2</td>
<td>PMS2 postmeiotic segregation increased 2</td>
<td>Indel_frameshift deletion</td>
<td>287_288del</td>
</tr>
<tr>
<td>302-CB-M</td>
<td>PTEN</td>
<td>phosphatase and tensin homolog</td>
<td>Indel_frameshift deletion</td>
<td>287_288del</td>
</tr>
<tr>
<td>302-CB-M</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>Indel_frameshift insertion</td>
<td>T1487fs</td>
</tr>
<tr>
<td>302-CB-M</td>
<td>KRAS</td>
<td>v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog</td>
<td>SNV_nonsynonymous SNV</td>
<td>G12D</td>
</tr>
<tr>
<td>302-CB-M</td>
<td>KRAS</td>
<td>v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog</td>
<td>SNV_nonsynonymous SNV</td>
<td>G12D</td>
</tr>
<tr>
<td>195-CB-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>Indel_frameshift deletion</td>
<td>N1122fs</td>
</tr>
<tr>
<td>195-CB-P</td>
<td>APC</td>
<td>adenomatous polyposis coli</td>
<td>Indel_frameshift deletion</td>
<td>1201_1201del</td>
</tr>
<tr>
<td>195-CB-P</td>
<td>TP53</td>
<td>tumor protein p53</td>
<td>SNV_nonsynonymous SNV</td>
<td>C135F</td>
</tr>
<tr>
<td>195-CB-P</td>
<td>PIK3CA</td>
<td>phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha</td>
<td>SNV_nonsynonymous SNV</td>
<td>H1047R</td>
</tr>
<tr>
<td>195-CB-P</td>
<td>KRAS</td>
<td>v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog</td>
<td>SNV_nonsynonymous SNV</td>
<td>G12V</td>
</tr>
</tbody>
</table>

Table S3 Lentiviral Transduction Particles. Related to Figure 6 and 7.

<table>
<thead>
<tr>
<th>LENTIVIRUS</th>
<th>SIGMA PRODUCT</th>
<th>PRODUCT NAME</th>
<th>VECTOR</th>
<th>TRC NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>SHC003V</td>
<td>MISSION® IGFP™ Positive Control Transduction Particles</td>
<td>~pLKO.1-puro-CMV-IGFP</td>
<td>NA</td>
</tr>
<tr>
<td>shHA1</td>
<td>SHCLNV-NM_018194</td>
<td>HHA1 MISSION shRNA Lentiviral Transduction Particles</td>
<td>~hPGK-Puro-CMV-IGFP</td>
<td>TRCN0000422901</td>
</tr>
<tr>
<td>shHA2</td>
<td>SHCLNV-NM_018194</td>
<td>HHA1 MISSION shRNA Lentiviral Transduction Particles</td>
<td>~hPGK-Puro-CMV-IGFP</td>
<td>TRCN0000422431</td>
</tr>
<tr>
<td>shHA3</td>
<td>SHCLNV-NM_018194</td>
<td>HHA1 MISSION shRNA Lentiviral Transduction Particles</td>
<td>~hPGK-Puro-CMV-IGFP</td>
<td>TRCN0000422181</td>
</tr>
</tbody>
</table>

TRC: The RNAi Consortium
Table S4 Taqman® Gene Expression Assays. Related to Figure 2, 3, 4, 5, 6 and 7.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Gene Name</th>
<th>UniGene ID</th>
<th>TaqMan® Gene Expression Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALDH1A1</td>
<td>aldehyde dehydrogenase 1 family member A1</td>
<td>Hs.76392</td>
<td>Hs00946916_m1</td>
</tr>
<tr>
<td>AQP3</td>
<td>aquaporin 3</td>
<td>Hs.234642</td>
<td>Hs01105469_g1</td>
</tr>
<tr>
<td>ASCL2</td>
<td>achaete-scute family bHLH transcription factor 2</td>
<td>Hs.152475</td>
<td>Hs00270888_s1</td>
</tr>
<tr>
<td>ATOH1</td>
<td>atonal homolog 1</td>
<td>Hs.532680</td>
<td>Hs00245453_s1</td>
</tr>
<tr>
<td>AXIN2</td>
<td>axin 2</td>
<td>Hs.156527</td>
<td>Hs00610344_m1</td>
</tr>
<tr>
<td>BMI1</td>
<td>BMI1 proto-oncogene, polycomb ring finger</td>
<td>Hs.380403</td>
<td>Hs0180411_m1</td>
</tr>
<tr>
<td>CTNNB1</td>
<td>catenin beta 1</td>
<td>Hs.476018</td>
<td>Hs00355049_m1</td>
</tr>
<tr>
<td>DPP4</td>
<td>dipeptidyl-peptidase 4</td>
<td>Hs.368912</td>
<td>Hs00897391_m1</td>
</tr>
<tr>
<td>EPHB2</td>
<td>EPH receptor B2</td>
<td>Hs.523329</td>
<td>Hs00362096_m1</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehyde-3-phosphate dehydrogenase</td>
<td>Hs.544577</td>
<td>Hs02758991_g1</td>
</tr>
<tr>
<td>HHAT</td>
<td>hedgehog acyltransferase</td>
<td>Hs.58650</td>
<td>Hs00911326_m1</td>
</tr>
<tr>
<td>IHH</td>
<td>indian hedgehog</td>
<td>Hs.654504</td>
<td>Hs00745531_s1</td>
</tr>
<tr>
<td>KRT20</td>
<td>keratin 20</td>
<td>Hs.84905</td>
<td>Hs00300643_m1</td>
</tr>
<tr>
<td>LGR5</td>
<td>leucine rich repeat containing G protein-coupled receptor 5</td>
<td>Hs.659889</td>
<td>Hs00969422_m1</td>
</tr>
<tr>
<td>MUC1</td>
<td>mucin 1, cell surface associated</td>
<td>Hs.89603</td>
<td>Hs00159357_m1</td>
</tr>
<tr>
<td>MUC2</td>
<td>mucin 2, oligomeric mucus/gel-forming</td>
<td>Hs.315</td>
<td>Hs03005103_g1</td>
</tr>
<tr>
<td>PTCH1</td>
<td>patched 1</td>
<td>Hs.494538</td>
<td>Hs00181117_m1</td>
</tr>
<tr>
<td>RUNX2</td>
<td>runt related transcription factor 2</td>
<td>Hs.535845</td>
<td>Hs01047973_m1</td>
</tr>
<tr>
<td>SHH</td>
<td>sonic hedgehog</td>
<td>Hs.164537</td>
<td>Hs00179843_m1</td>
</tr>
<tr>
<td>SMO</td>
<td>smoothened, frizzled class receptor</td>
<td>Hs.437846</td>
<td>Hs01090242_m1</td>
</tr>
</tbody>
</table>

Supplemental References