日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Low temperature thermodynamic investigation of the phase diagram of Sr3Ru2O7

MPS-Authors
/persons/resource/persons212556

Sun,  D.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126742

Mackenzie,  A. P.
Andrew Mackenzie, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126548

Brando,  M.
Manuel Brando, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Sun, D., Rost, A. W., Perry, R. S., Mackenzie, A. P., & Brando, M. (2018). Low temperature thermodynamic investigation of the phase diagram of Sr3Ru2O7. Physical Review B, 97(11):, pp. 1-8. doi:10.1103/PhysRevB.97.115101.


引用: https://hdl.handle.net/21.11116/0000-0000-DB9B-B
要旨
We studied the phase diagram of Sr3Ru2O7 by means of heat capacity and magnetocaloric effect measurements at temperatures as low as 0.06 K and fields up to 12 T. We confirm the presence of a new quantum critical point at 7.5 T which is characterized by a strong non-Fermi-liquid behavior of the electronic specific heat coefficient Lambda C/T similar to - log T over more than a decade in temperature, placing strong constraints on theories of its criticality. In particular logarithmic corrections are found when the dimension d is equal to the dynamic critical exponent z, in contrast to the conclusion of a two-dimensional metamagnetic quantum critical end point, recently proposed. Moreover, we achieved a clear determination of the new second thermodynamic phase adjoining the first one at lower temperatures. Its thermodynamic features differ significantly from those of the dominant phase and characteristics expected of classical equilibrium phase transitions are not observed, indicating fundamental differences in the phase formation.