English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Oncogenic ß-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids

MPS-Authors
/persons/resource/persons50423

Marks,  Matthias
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50201

Herrmann,  Bernhard G.
Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Riemer.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Riemer, P., Rydenfelt, M., Marks, M., van Eunen, K., Thedieck, K., Herrmann, B. G., et al. (2017). Oncogenic ß-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. The Journal of Cell Biology: JCB, 216(6), 1567-1577. doi:10.1083/jcb.201610058.


Cite as: https://hdl.handle.net/21.11116/0000-0000-C7C5-1
Abstract
Colorectal cancer is driven by cooperating oncogenic mutations. In this study, we use organotypic cultures derived from transgenic mice inducibly expressing oncogenic β-catenin and/or PIK3CAH1047R to follow sequential changes in cancer-related signaling networks, intestinal cell metabolism, and physiology in a three-dimensional environment mimicking tissue architecture. Activation of β-catenin alone results in the formation of highly clonogenic cells that are nonmotile and prone to undergo apoptosis. In contrast, coexpression of stabilized β-catenin and PIK3CAH1047R gives rise to intestinal cells that are apoptosis-resistant, proliferative, stem cell–like, and motile. Systematic inhibitor treatments of organoids followed by quantitative phenotyping and phosphoprotein analyses uncover key changes in the signaling network topology of intestinal cells after induction of stabilized β-catenin and PIK3CAH1047R. We find that survival and motility of organoid cells are associated with 4EBP1 and AKT phosphorylation, respectively. Our work defines phenotypes, signaling network states, and vulnerabilities of transgenic intestinal organoids as a novel approach to understanding oncogene activities and guiding the development of targeted therapies.