Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Thermal Stability and Tuning of Thermoelectric Properties of Ag1-xSb1+xTe2+x (0 <= x <= 0.4) Alloys

MPG-Autoren
/persons/resource/persons208689

Wyzga,  Pawel
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126891

Veremchuk,  Igor
Igor Veremchuk, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126556

Burkhardt,  Ulrich
Ulrich Burkhardt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126855

Simon,  Paul
Paul Simon, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126626

Grin,  Yuri
Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wyzga, P., Veremchuk, I., Burkhardt, U., Simon, P., Grin, Y., & Wojciechowski, K. T. (2018). Thermal Stability and Tuning of Thermoelectric Properties of Ag1-xSb1+xTe2+x (0 <= x <= 0.4) Alloys. Applied Sciences, 8(1): 52, pp. 1-18. doi:10.3390/app8010052.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-B7DC-A
Zusammenfassung
Introduction of nonstoichiometry to AgSbTe2-based materials is considered to be an effective way to tune thermoelectric properties similarly to extrinsic doping. To prove this postulate, a systematic physicochemical study of the Ag1-xSb1+xTe2+x alloys (0 <= x <= 0.4) was performed. In order to investigate the influence of the cooling rate after synthesis on phase composition and thermoelectric performance, slowly cooled and quenched Ag1-xSb1+xTe2+x alloys (x = 0; 0.1; 0.17; 0.19; 0.3; 0.4) were prepared. Single-phase material composed of the beta phase (NaCl structure type) was obtained for the quenched x = 0.19 sample only. The other alloys must be regarded as multi-phase materials. The cooling rate affects the formation of the phases in the Ag-Sb-Te system and influences mainly electronic properties, carrier mobility and carrier concentration. The extremely low lattice thermal conductivity is an effect of the mosaic nanostructure. The maximal value of the figure of merit ZT(max) = 1.2 is observed at 610 K for the slowly cooled multi-phase sample Ag0.9Sb1.1Te2.1. Thermoelectric properties are repeatedly reproducible up to 490 K.