Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Electron Acceleration at Pulsar Wind Termination Shocks

MPG-Autoren
/persons/resource/persons79108

Giacche,  S.
Division Prof. Dr. Werner Hofmann, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30680

Kirk,  John G.
Division Prof. Dr. Werner Hofmann, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Giacche, S., & Kirk, J. G. (2017). Electron Acceleration at Pulsar Wind Termination Shocks. Astrophysical Journal, 835(2): 235. doi:10.3847/1538-4357/835/2/235.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-CBF0-C
Zusammenfassung
We study the acceleration of electrons and positrons at an electromagnetically modified, ultrarelativistic shock in the context of pulsar wind nebulae. We simulate the outflow produced by an obliquely rotating pulsar in proximity of its termination shock with a two-fluid code that uses a magnetic shear wave to mimic the properties of the wind. We integrate electron trajectories in the test-particle limit in the resulting background electromagnetic fields to analyze the injection mechanism. We find that the shock-precursor structure energizes and reflects a sizable fraction of particles, which becomes available for further acceleration. We investigate the subsequent first-order Fermi process sustained by small-scale magnetic fluctuations with a Monte Carlo code. We find that the acceleration proceeds in two distinct regimes: when the gyroradius r(g) exceeds the wavelength of the shear gimel, the process is remarkably similar to first-order Fermi acceleration at relativistic, parallel shocks. This regime corresponds to a low-density wind that allows the propagation of superluminal waves. When r(g) < gimel, which corresponds to the scenario of driven reconnection, the spectrum is softer.