日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Mapping of Human FOXP2 Enhancers Reveals Complex Regulation

MPS-Authors
/persons/resource/persons32814

Becker,  Martin
Neurogenetics of Vocal Communication Group, MPI for Psycholinguistics, Max Planck Society;
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons41443

Devanna,  Paolo
Neurogenetics of Vocal Communication Group, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons4427

Fisher,  Simon E.
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

/persons/resource/persons37905

Vernes,  Sonja C.
Neurogenetics of Vocal Communication Group, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

Becker_etal_2018.pdf
(出版社版), 2MB

付随資料 (公開)
There is no public supplementary material available
引用

Becker, M., Devanna, P., Fisher, S. E., & Vernes, S. C. (2018). Mapping of Human FOXP2 Enhancers Reveals Complex Regulation. Frontiers in Molecular Neuroscience, 11:. doi:10.3389/fnmol.2018.00047.


引用: https://hdl.handle.net/21.11116/0000-0000-B1B8-8
要旨
Mutations of the FOXP2 gene cause a severe speech and language disorder, providing a molecular window into the neurobiology of language. Individuals with FOXP2 mutations have structural and functional alterations affecting brain circuits that overlap with sites of FOXP2 expression, including regions of the cortex, striatum, and cerebellum. FOXP2 displays complex patterns of expression in the brain, as well as in non-neuronal tissues, suggesting that sophisticated regulatory mechanisms control its spatio-temporal expression. However, to date, little is known about the regulation of FOXP2 or the genomic elements that control its expression. Using chromatin conformation capture (3C), we mapped the human FOXP2 locus to identify putative enhancer regions that engage in long-range interactions with the promoter of this gene. We demonstrate the ability of the identified enhancer regions to drive gene expression. We also show regulation of the FOXP2 promoter and enhancer regions by candidate regulators – FOXP family and TBR1 transcription factors. These data point to regulatory elements that may contribute to the temporal- or tissue-specific expression patterns of human FOXP2. Understanding the upstream regulatory pathways controlling FOXP2 expression will bring new insight into the molecular networks contributing to human language and related disorders.