Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Reinforcement Learning with Neural Networks for Quantum Feedback

MPG-Autoren
/persons/resource/persons216883

Fösel,  Thomas
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons221006

Tighineanu,  Petru
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons216179

Weiss,  Talitha
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201125

Marquardt,  Florian
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;
University of Erlangen-Nürnberg, Department of Physics;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1802.05267.pdf
(beliebiger Volltext), 8MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fösel, T., Tighineanu, P., Weiss, T., & Marquardt, F. (submitted). Reinforcement Learning with Neural Networks for Quantum Feedback.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-55EC-6
Zusammenfassung
Artificial neural networks are revolutionizing science. While the most prevalent technique involves supervised training on queries with a known correct answer, more advanced challenges often require discovering answers autonomously. In reinforcement learning, control strategies are improved according to a reward function. The power of this approach has been highlighted by spectactular recent successes, such as playing Go. So far, it has remained an open question whether neural-network-based reinforcement learning can be successfully applied in physics. Here, we show how to use this method for finding quantum feedback schemes, where a network-based "agent" interacts with and occasionally decides to measure a quantum system. We illustrate the utility by finding gate sequences that preserve the quantum information stored in a small collection of qubits against noise. This specific application will help to find hardware-adapted feedback schemes for small quantum modules while demonstrating more generally the promise of neural-network based reinforcement learning in physics.