Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Indoor Quadrotor Teleoperation: On-Board State-Estimation and Obstacle Avoidance

MPG-Autoren
/persons/resource/persons192619

Odelga,  M
Project group: Autonomous Robotics & Human-Machine Systems, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons133440

Stegagno,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Autonomous Robotics & Human-Machine Systems, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216476

Kochanek,  N
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Odelga, M., Stegagno, P., Kochanek, N., & Bülthoff, H. (2017). Indoor Quadrotor Teleoperation: On-Board State-Estimation and Obstacle Avoidance. Poster presented at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017), Vancouver, BC, Canada.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-C40D-5
Zusammenfassung
Indoor operation of Unmanned Aerial Vehicles (UAVs) is challenging due to the lack of GPS signal and often cramped spaces. The presence of obstacles in an unfamiliar environment requires reliable state estimation and active algorithms to prevent collisions. We present a teleoperated quadrotor UAV platform capable of accurate state-estimation and collision-free navigation.