English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

Explicit Computations, Simulations and additional Results for the Dynamic Decentralized Control for Protocentric Aerial Manipulators Technical Attachment to: ”Dynamic Decentralized Control for Protocentric Aerial Manipulators” 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, May 2017

MPS-Authors
/persons/resource/persons192846

Yüksel,  B
Project group: Autonomous Robotics & Human-Machine Systems, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83915

Franchi,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tognon, M., Yüksel, B., Buondonno, G., & Franchi, A.(2017). Explicit Computations, Simulations and additional Results for the Dynamic Decentralized Control for Protocentric Aerial Manipulators Technical Attachment to: ”Dynamic Decentralized Control for Protocentric Aerial Manipulators” 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, May 2017. Toulouse, France: Laboratoire d'analyse et d'architecture des systèmes.


Cite as: https://hdl.handle.net/21.11116/0000-0000-C3D3-5
Abstract
This document is a technical attachment to ”Dynamic Decentralized Control for Protocentric Aerial Manipulators” for explicit computations of the nominal states and the inputs of a Pro- tocentric Aerial Manipulator (PAM) in 2D, using differential flatness property. In ”Dynamic Decentralized Control for Protocentric Aerial Manipulators” these values are used to control a PAM in 3D. Furthermore, considering the aerial manipulator design used for the experiments in that paper, here we inves- tigate the case when the system is non-protocentric; i.e., the manipulating arm is not exactly attached to the CoM of the flying robot, P0 . We show the effect of the distance between this attachment point and P0 on the performance tracking a composite trajectory. Finally some additional plots related to the experimental results are provided.