Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Weyl fermions in antiferromagnetic Mn3Sn and Mn3Ge

MPG-Autoren
/persons/resource/persons197089

Kübler,  J.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kübler, J., & Felser, C. (2017). Weyl fermions in antiferromagnetic Mn3Sn and Mn3Ge. EPL, 120(4): 47002, pp. 1-5. doi:10.1209/0295-5075/120/47002.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-8D11-E
Zusammenfassung
The anomalous Hall effect in the noncollinear antiferromagnetic metals Mn3Ge and Mn3Sn has been observed after a theoretical prediction made by us (KUBLER J. and FELSER C., EPL, 108 (2014) 67001). The experimental values of the anomalous Hall conductivities (AHC) are large as are the theoretical values. Recently measured thermoelectric properties mirror the large AHC and clearly show that the transport is by quasiparticles at the Fermi energy. We here make an attempt to unravel the origin of the large AHC and show that both Mn3Sn and Mn3Ge host Weyl points, which were recently discovered in semimetals. For this purpose we determine the electronic structure ab initio in the local spin-density functional approximation. The Weyl points are found to occur below the Fermi energy and we argue that spots of large Berry flux ("hot spots") that are seen at the Fermi surface are produced by the Weyl nodes. Copyright (C) EPLA, 2018