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Abstract 

One possibility for electrification of road transport consists of battery electric vehicles in combination 

with carbon-free sources of electricity. It is highly likely that lithium-ion batteries will provide the basis 

for this development. In the present paper, we use a recently developed, semi-quantitative assessment 

scheme to evaluate the relative supply risks associated with the elements used in the functional 

materials of six different lithium-ion battery types. Eleven different indicators in four supply risk 

categories are applied to each element; the weighting of the indicators is determined by external 

experts within the framework of an Analytic Hierarchy Process. The range of supply risk values on the 

elemental level is distinctly narrower than in our previous work on photovoltaic materials. The highest 

values are obtained for lithium and cobalt; the lowest for aluminium and titanium. Copper, iron, nickel, 

carbon (graphite), manganese and phosphorous form the middle group. We then carry out the 

assessment of the six battery types, to give comparative supply risks at the technology level. For this 

purpose the elemental supply risk values are aggregated using four different methods. Due to the small 

spread at the elemental level the supply risk values in all four aggregation methods also lie in a narrow 

range. Removing lithium, aluminium and phosphorous from the analysis, which are present in all types 

of battery, improves the situation. For aggregation with the simple arithmetic mean, an uncertainty 

analysis shows that only lithium-iron phosphate has a measurably lower supply risk compared to the 

other battery types. For the “cost-share” aggregation using seven elements, lithium cobalt oxide has a 

substantially higher supply risk than most other types. 
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1. Introduction 

On account of its high specific energy, relatively low cost and long cycle life, the lithium-ion battery in 

its various forms has found many applications in the last two decades (Eisler, 2016; Goodenough and 

Park, 2013; Tarascon and Armand, 2001; Yoshino, 2012). These range from consumer electronics, 

computer notebooks, mobile phones and power tools to electric vehicles and even stationary grid 

storage. As has been recently pointed out (Blomgren, 2017; Hu et al., 2017; Kim et al., 2012), installed 

capacity is expected to grow rapidly in future due to performance improvements and sinking costs. 

Electric vehicles and grid storage are likely to be particularly strong growth areas(Hu et al., 2017). The 

reason is to be found in the efforts currently being made internationally to limit greenhouse gas (GHG) 

emissions. The main goal of the climate agreement concluded in 2015 in Paris (COP21) is to hold global 

warming to “well below 2°C above pre-industrial levels” and, moreover, “to pursue efforts to limit the 

increase to 1.5°C” (United Nations/Framework Convention on Climate Change, 2015). This can only be 

achieved if sometime in the second half of this century net GHG emissions are reduced to zero globally. 

Since road transport alone is currently responsible for about 20% of GHG emissions in, for example, 

the EU (Eurostat, 2016a), one obvious route is the electrification of this sector in combination with low 

carbon, or carbon-free, sources of electrical energy. In the second area mentioned, namely, stationary 

grid storage, Li-ion battery technology may be used increasingly to combat mainly short-term 

intermittency problems associated with renewable energy sources (Arbabzadeh et al., 2016).  The 

present paper is largely motivated by the current discussion on the possible, foreseeable material 

requirements for electrification in the transport sector and grid storage as well as on the concomitant 

supply risks associated with these metals and minerals. The supply risks require early identification 

and may also need international action for their mitigation (Ali et al., 2017). Using a recently developed 

procedure the paper compares in a semi-quantitative way the supply risks associated not only with the 

key metals and minerals, but also with the technologies used in Li-ion batteries. 

The solution for the transport sector that has received the most attention is the battery electric vehicle 

(BEV). Other battery solutions, such as the hybrid or plug-in hybrid electric vehicle, are unlikely to 

satisfy the strict emission requirements likely to become obligatory in the course of the next few 

decades (e.g. Hu et al., 2016; Marina Martinez et al., 2016). (So-called extended range electric vehicles 

might satisfy the requirements, if the supplementary liquid fuel derives from renewable sources.) If a 

complete switch to BEVs were to occur in the next two or three decades, then it is likely, at least for 

cars and vans, that they would also be powered by lithium-ion batteries. In the longer term, it is 

possible that other battery types, such as lithium-sulphur or lithium-oxygen, will by then have more 

favourable characteristics, such as higher specific energy and/or lower costs. The other alternative for 

the power train in an electric vehicle is the hydrogen-powered PEM fuel cell, where PEM stands for 

“proton exchange membrane” (Gröger et al., 2015). In this case there are also material problems: not 
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only the fuel cell itself, but also the electrolyser for producing the hydrogen fuel from water, is likely 

to require electrodes composed of platinum group metals. There are considerable supply risks 

associated with these materials; their costs are also considered rather high, at least in comparison with 

lithium and the transition metals used in Li-ion batteries. On the other hand, fuel cell electric vehicles 

(FCEVs) in the category “mid-size family car” already have, unlike BEVs, a driving range of ~500 km 

using hydrogen stored in high pressure tanks. Which of the two power train systems will ultimately 

prevail, may depend on public acceptance. The reader is referred to the review article by Gröger et al. 

(Gröger et al., 2015) for a fuller discussion. A glance at a recent document of the European Commission 

shows that detailed plans are being laid, and incentives planned, in order to promote the introduction 

in Europe of low and zero emission vehicles on the timescale indicated above (European Commission, 

2016). 

The recent increase in the contribution of renewable energy to electrical supply, at least in Europe 

(2014: 27.5% of gross electricity consumption (Eurostat, 2016b)), derives mainly from the installation 

of photovoltaic modules and wind turbines. These intermittent sources give rise, however, to an 

increased demand for electricity storage capability that will inevitably increase in coming years. This 

will occur at various levels. Firstly, there is the need for balancing, or “smoothing” stochastic 

fluctuations on the scale of seconds and minutes which come about not only because of intermittency 

in supply but also because of consumer behaviour. Secondly, fluctuations occur inevitably on the 

timescale of a day, or of a few days, for example, the differences between night and day, but also as a 

result of extended periods of weather not conducive to electricity generation. Combatting fluctuations 

of this sort is sometimes referred to as “load levelling” or “peak shaving”. Thirdly, there are fluctuations 

on a seasonal level, i.e. on the scale of months, in particular differences between summer and winter. 

Because of the huge amounts of energy that would be required for coping with seasonal variations, it 

is generally agreed that pumped hydroelectric storage (PHS) is probably the only viable solution. At 

present, battery-based solutions in connection with the first two categories represent less than 1% of 

the total installed storage capacity in Europe (Geth et al., 2015). At the time of writing, it is not possible 

to estimate the likelihood of battery-based storage playing a major role in the grid of the future.  

Nevertheless, from our present vantage point, it is clear that the decarbonisation of transport can only 

occur through the large-scale introduction of BEVs or FCEVs. Whereas it is unlikely that both 

technology approaches will be applied in parallel because of the high infrastructure costs, the chances 

that the BEV will make the running are good. The advantages of Li-ion battery technologies over other 

rechargeable batteries are consistent in technical, environmental and cost assessments (Hammond 

and Hazeldine, 2015). Since a rough estimate would put the number of cars and vans in the global road 

vehicle fleet at approximately 109 (we exclude trucks, as well as other transport forms, in particular 
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shipping and air traffic, for which other solutions will probably have to be found), the question of the 

raw materials required for lithium-ion batteries and the concomitant supply risks needs to be 

addressed. The rapid market growth and a lack of closed-loop recycling of Li-ion batteries make it 

unlikely that secondary material sources will be available in the near future (Zeng et al., 2014). Because 

of the different chemistries in different types of battery, we also consider here, apart from lithium 

itself (Li availability is also discussed in other scientific papers, e.g. (Vikström et al., 2013), as well as in 

magazine articles, e.g. (The Economist, 2017)), the supply risks associated with the several other 

elements used as functional materials. 

The supply risks for raw materials, in particular for rare metals1, are influenced by such factors as the 

possible dwindling of resources, increases in demand for the element in other industrial applications 

or the occurrence of monopolies and cartels. Physical shortage and longer delivery times as well as 

price rises and geopolitical tension could have substantial negative implications for battery or car 

producers and complicate the large-scale introduction of BEVs. The increased attention paid to such 

questions of raw material supply dates back to a study of the National Research Council (NRC) of the 

US National Academies in 2008 with the title “Minerals, critical minerals, and the US economy” (U.S. 

National Research Council, 2008). Many investigations have since followed, several of them concerned 

specifically with energy-related materials (Goe and Gaustad, 2014; Moss et al., 2013, 2011; Roelich et 

al., 2014; U.S. Department of Energy, 2011; Zepf et al., 2014). The US Department of Energy (U.S. 

Department of Energy, 2011) assessed the supply risks associated with various materials required for 

different technologies in the clean energy sector such as photovoltaics, wind turbines and electric 

vehicles. Similarly, Moss et al. (Moss et al., 2013) identified resource requirements for various green 

energy technologies necessary for the implementation of the EU decarbonisation strategy and 

evaluated supply risk. Subsequent studies, such as that of Goe and Gaustad (Goe and Gaustad, 2014) 

focussed on the US, looked at the raw materials necessary for specific green energy technologies, but 

without comparing specifically the different technical solutions (e.g. in thin-film photovoltaics). 

As described in two earlier papers (Helbig et al., 2016; Tuma et al., 2014), our philosophy is somewhat 

different from that in most previous resource studies. We think it is only meaningful to assess supply 

risks semi-quantitatively (i.e. the likelihood of supply being unable to meet demand), if it is done on a 

comparative basis. In the present paper, we therefore first determine the supply risks associated with 

the elements required for the functional materials. Eleven indicators covering the main areas of supply 

risk are used, as in our previous work on thin-film photovoltaics (Helbig et al., 2016); these are 

                                                           
1 An element is normally considered “rare“ if its concentration in the Earth’s crust is below about 0.1%. In a 
recent, more popular, but percipient work on minerals and commodity markets Abraham (Abraham, 2015) also 
seems to prefer “rare metals“ to “critical metals”, a term for which there is no agreed definition (Bradshaw et 
al., 2013). 



Preprint Helbig et al.: J. of Cleaner Production 172 (2018) 274-286 10.1016/j.jclepro.2017.10.122 

5 

categorized and weighted for the specific case of lithium-ion batteries. The relative supply risks 

determined in this way for the elements concerned are then combined to produce relative supply risks 

for the different battery types. For this purpose various aggregation procedures are investigated, the 

simplest of which just involves taking the arithmetic mean. The structure of the article is as follows: In 

the next chapter the lithium-ion battery is described briefly on a general level, and information is given 

on some of the more common battery types. The list of elements in the present study is discussed and 

previous work on supply risk, in particular in connection with resource depletion, described. The 

specific method we use for assessing supply risks on the elemental and technology levels is described 

in chapter 3. We then present results in chapter 4 for the semi-quantitative supply risk assessment for 

the elements themselves and for the selected list of Li-ion battery technologies. The article ends with 

a discussion of the results and some conclusions. 

2. Battery composition and previous supply risk studies 

A schematic illustration of a rechargeable Li-ion battery cell - actually of the original LiCoO2/graphite 

(LCO-C) cell - is shown in Fig. 1 (Peters and Weil, 2016). A battery may consist of one or several such 

cells that are connected in series or in parallel. Each cell consists of two electrodes (anode and 

cathode), both containing active material, binder and current collector as well as a Li+-conducting 

electrolyte consisting of LiPF6 in organic solution. A porous polymer separator is used to prevent 

electrical and mechanical contact between the electrodes. Because of the high reactivity of lithium the 

whole system must be kept strictly free of water. A battery management system monitoring and 

controlling individual cell voltages, battery temperature and possible overloading increases safety and 

lifetime of the battery (Jaguemont et al., 2016). The battery is based on the principle of reversible, 

alternate intercalation of Li ions in graphite at the anode and in a lithium compound (e.g. a cobaltate) 

at the cathode. Thus, on discharging the battery, lithium atoms in or on the anode ionize into the 

electrolyte as Li+, from where they migrate to the cathode. Here, a transition metal oxide is reduced 

by acquiring electrons from the external circuit, so that the Li ions can be incorporated into the lattice. 

At the same time, electrons move from the anode through the external circuit to the cathode. The 

reverse process occurs on charging. Figure 1 is drawn to demonstrate specifically the discharge 

process. The usual battery parameters, namely, energy density, power density, specific energy, 

capacity, charging time and lifetime, as used in this article, are defined in Ref. (Nitta et al., 2015; Sterner 

and Stadler, 2014; Yu and Zhou, 2013). 
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Figure 1: Main components of a LCO battery cell in discharging mode (Peters and Weil, 2016). 

Which functional materials are involved? Most of the currently available batteries use graphite, or 

more accurately, a graphite-lithium intercalation compound as anode with copper as current collector. 

The only other option at present is lithium titanate, Li4Ti5O12, with aluminium as a collector. This anode 

material shortens the charging time. The higher electrochemical potential of lithium titanate in 

comparison to the graphite anode drastically reduces, however, the energy density. This anode is 

therefore mainly used in power tools or hybrid electric vehicles, where power density is more 

important. On the cathode side a greater variety of elemental composition is encountered. The 

cathode material determines largely the specific energy and energy density, the cell voltage and the 

lifetime. For all cathode materials an important factor is the maximum usable amount of lithium that 

can be mobilized without permanently damaging the crystalline structure of the oxide cathode. The 

cathode materials are typically abbreviated with three letters, which are also often used to designate 

the type of battery. Thus, LCO stands for lithium cobalt oxide (LiCoO2), which was introduced 

commercially in 1991 as the first major lithium ion battery technology (Yoshino, 2012). Table 1 gives 

an overview of some of the more common Li-ion battery types that are used, or have been used, in 

the transport sector. The list serves as the basis for the analysis in the present paper. Although LCO 

batteries have a high energy density, the high price of cobalt and political problems associated with its 

supply led at an early stage to the development of alternative cathode materials for high energy 

density and long lifetime, but containing little or no cobalt. The lithium manganese oxide (LMO) battery 

with composition LiMn2O4 came on the market about five years later. In the NMC battery, on the other 

hand, the cobalt is only partially substituted by nickel and manganese; in principle any combination 

LiNixMnyCo1-x-yO2 of the three metals is possible. Most common and considered in this article is 
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NMC333, also designated NMC111, which is short for LiNi1/3Mn1/3Co1/3O2. NMC batteries are already 

of great importance in the transport sector. A further possibility is lithium nickel cobalt aluminium 

oxide (NCA), a layer system with the stoichiometry LiNi0.8Co0.15Al0.05O2. The last example is lithium iron 

phosphate (LiFePO4), a cathode material for which energy density is sacrificed to some extent in order 

to achieve better safety properties and lower production costs. This cathode material is also used with 

a lithium titanate anode, leading to the two designations LFP-C and LFP-LTO. Sometimes, in particular 

in more fundamental electrochemical studies, the various cathode materials are also classified and 

discussed in terms of their structure: “olivine” (LFP),  “layered” (LCO, NMC, NCA) or “spinel” (LMO) 

(Ghadbeigi et al., 2015; Goodenough and Park, 2013; Nitta et al., 2015; Park et al., 2011). 

Table 1: Common commercial battery types and the electrochemical properties for representative, but specific cells 
based on corresponding references (Nitta et al., 2015; Sterner and Stadler, 2014). 

Type Cathode 
active material 

Anode 
active material 

Potential cathode 
Li/Li+ 
(V) 
(Nitta et al., 2015) 

Usable Li 
share 
(Sterner and Stadler, 2014) 

Specific 
capacity 
(Ah/kg 
cathode) 
(Nitta et al., 2015) 

Specific 
energy 
(Wh/kg 
cathode) 
(calculated) 

LCO-C LiCoO
2
 graphite 3.8 55% 150 570 

LMO-C LiMn2O4 graphite 4.1 80% 120 492 
NCA-C Li(Ni

1-x-y
Co

x
Al

y
)O

2
 graphite 3.7 70% 200 740 

NMC-C Li(Ni
x
Mn

y
Co

1-x-

y
)O

2
 

graphite 3.7 66% 170 629 

LFP-C LiFePO
4
 graphite 3.4 95% 165 561 

LFP-
LTO 

LiFePO
4
 Li4Ti5O12 3.4 95% 165 305 

 

In addition to the widely used battery types NMC, NCA and LFP, a new class of lithium-rich layered 

oxide cathode has recently been introduced, which can be described as a blend of Li2MnO3 and LiMO2 

(M = one or more transition metal) (Yu and Zhou, 2013). The increased lithium content in the cathode 

potentially increases the charge carrier density and thus the capacity of the battery. Examples are 

Li1.2Ni0.15Mn0.55Co0.1O2 (Li et al., 2014) or Li1.2Ni0.17Mn0.57Co0.07O2 (Yu and Zhou, 2013). Another strategy 

to increase energy density is to increase the voltage instead of the specific capacity, which in theory is 

possible with LiNiMnO4, a lithium spinel structure where manganese is partially substituted by nickel 

(Kim et al., 2012). These latter devices are mentioned here to demonstrate that the field is very much 

under development (Andre et al., 2015); they are not included in the present analysis. We also do not 

consider all-solid-state batteries (Troy et al., 2016). 

From this discussion we conclude that supply risks associated with one or more of the ten elements 

lithium, aluminium, titanium, manganese, iron, cobalt, nickel, copper, carbon (graphite) and 

phosphorous could, in turn, cause supply risks for one or more of the various lithium ion battery 

technologies. Lithium is necessary for all battery types in the cathode active material (and is also 

contained in the electrolyte), but has a by far lower mass contribution; in the case of LFP-LTO it is also 
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present in the anode active material. Carbon, in the form of natural graphite, is used for all anodes 

with the exception of LFP-LTO. Aluminium is employed in the NCA cathode and in current collectors of 

all types. Titanium is only contained in the LTO anode. Iron is only employed in the LFP cathode; this is 

true for phosphorous as well, but it is also a component of the electrolyte. Manganese, nickel and 

cobalt are important for one or more cathode active materials. Copper is the current collector material 

for all graphite anodes (Peters and Weil, 2016). 

How have supply risks been treated in the past in resource studies of Li-ion batteries, in particular their 

cathode materials? For so-called green energy storage Arbabzadeh et al. (Arbabzadeh et al., 2016) 

have formulated twelve principles relevant to the design of material-intensive electrical grid 

components. One of these is that the use of critical materials should be minimized. (The term “critical” 

is sometimes used for elements, for which it is perceived that supply risk problems exist, or could 

develop, in coming years. As already implied by Footnote 1, there is unfortunately no accepted 

definition of what exactly constitutes a “critical” material (Bradshaw et al., 2013; Frenzel et al., 2017). 

One might perhaps observe that its precise meaning is a part of ongoing research (Graedel and Reck, 

2016).) Previous resource studies of the material requirements for Li-ion batteries have focused mainly 

on the total future demand for applications in the transport sector as well as on the environmental 

impact of various battery types. Thus, Gaines and Nelson (Gaines and Nelson, 2009) estimated in a 

relatively early paper the lithium demand from electric vehicles in the United States until 2050 for four 

battery technologies. They addressed questions such as the availability of lithium (reserves and reserve 

base), the possibility of formation of new cartels and the existence of other supply constraints. 

Delucchi et al. (Delucchi et al., 2013) listed aspects such as reserves, resources, recycling and material 

costs for selected vehicle battery type materials. They concluded that there are at least two lithium-

ion battery technologies, LiMn2O4 and LiFePO4, that “do not use scarce or expensive materials, 

assuming that the lithium production and recycling industries develop as might be expected”. 

Ghadbeigi et al. (Ghadbeigi et al., 2015) performed a more material-oriented survey of the lithium-ion 

battery literature, but included the resource-oriented indicators “static reach” and Herfindahl-

Hirschman “concentration index” in their analysis. In a revised version of an earlier report “Raw 

Materials for Emerging Technologies” (in German) Marscheider-Weidemann et al. (Marscheider-

Weidemann et al., 2016) have created scenarios for global raw material demand in 42 emerging 

technologies. On the assumption that a market breakthrough for battery electric vehicles will have 

occurred by 2035, they concluded that there would have to be on average a 7.5% annual growth rate 

in the production of lithium, and a 3.0% growth rate in that of cobalt in order to satisfy demand from 

electric vehicles alone. A similar, but more detailed study, by Simon et al. (Simon et al., 2015), covering 

five different Li-ion battery types, has come to similar conclusions. These authors emphasized in 

particular the limited reserves of lithium and nickel and the possible role of resource depletion in 
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coming decades. Peters and Weil (Peters and Weil, 2016) are more conservative in their estimates. In 

contrast to the above supply risk assessments, they quantified resource depletion by using the 

characterization factors from six different Life Cycle Impact Assessment (LCIA) methodologies.  The 

results from the various assessments were very non-uniform and the authors concluded that all the 

methods have some major drawback that influences negatively the result obtained. By considering 

only the active materials used for the electrodes and collectors was it possible to ascertain with most 

methodologies an advantage for LFP that is probably due to the absence of “critical” materials such as 

cobalt and nickel (Peters and Weil, 2016). We note that all of the impact categories used in these 

techniques are essentially long-term indicators, whereas supply risk assessments in the present paper 

(and in those of several previous authors, e.g. Simon et al. (Simon et al., 2015)) also take into account 

the short- to mid-term risks associated with the material requirements of a technology. Peters and 

Weil (Peters and Weil, 2016) point out that one of the problems for LCA-related resource studies is an 

on-going discussion on the meaning (and estimation) of the resource depletion potential. This issue 

has also been recently discussed by Dewulf et al. (Dewulf et al., 2015). Moreover, it should be noted 

that in resource studies in general some doubt always exists as to the real extent of reserves and 

resources, since the economic viability of extraction plays an important role in the definition of these 

two concepts.  

In LCIA studies in general, resource depletion aspects form only one part of the evaluation, alongside 

the more widely used aspects of human health and ecosystem quality. Thus, Majeau-Bettez et al. 

(Majeau-Bettez et al., 2011) and Zackrisson et al. (Zackrisson et al., 2010), compare the environmental 

impacts of different electric vehicle battery types. Similarly, Reuter (Reuter, 2016a, 2016b) has 

compared NMC and LFP batteries according to different sustainability criteria in the three categories 

often associated with the concept of sustainability, namely, “environmental”, “economic” and “social”. 

In the first category he has employed LCIA techniques for an emissions assessment (greenhouse gases, 

acidification potential, eutrophication potential) and material flow analysis for resource depletion. To 

assess supply risk in the second category, Reuter used a weighted average of the supply risks scores 

from a report of the European Commission (European Commission, 2014), which includes the 

indicators “market concentration”, “political stability”, “substitutability” and “recyclability”. On the 

environmental side, but outside the LCIA formalism, Diekmann et al. (Diekmann et al., 2017) have 

recently compared the merits of various recycling schemes for Li-ion batteries and have also described 

a new “ecological” recycling procedure. The latter is characterized by a mainly mechanical process 

followed by a hydrometallurgical treatment to recover the electrode materials. Wang et al. (Wang et 

al., 2014) also pointed out the importance of cathode active material composition for later recycling 

opportunities, but in the current phase of technological development, large-scale waste streams to 

cover the raw material requirements are not available. 
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3. Method 

The evaluation method used in this article to assess the supply risks associated with the materials used 

in different lithium-ion battery chemistries (referred to as “technologies” in this article) follows the 

approach presented in previous articles by the authors (Helbig et al., 2016; Tuma et al., 2014). Firstly, 

it evaluates the relative supply risk of the individual elements constituting the functional materials in 

various lithium-ion batteries (Li, Al, Ti, Mn, Fe, Co, Ni, Cu, P, graphite) specifically for the case of lithium-

ion batteries. Secondly, it goes on to aggregate the supply risk “scores” at the technology level for six 

battery systems, as shown in Table 1 (LCO-C, LMO-C, NMC-C, NCA-C, LFP-C and LFP-LTO). Not 

considered in the evaluation are oxygen and non-graphitic carbon, as well as other materials in 

polymers and the battery management system. In contrast to the previous application to thin-film 

photovoltaics (Helbig et al., 2016), there is a significant overlap of the elements in the evaluated 

technologies: lithium and aluminium are contained in all Li-ion battery technologies; copper is 

contained in all technologies that use a graphite anode (i.e. all except LFP-LTO). Moreover, six 

technologies are compared, rather than only two in the case of thin-film photovoltaics.  

The essential features of our assessment procedure are shown schematically in the hierarchical 

diagram of Figure 2. The relative supply risk for the elements is considered to be composed of four 

general supply risk criteria: (i) risk of supply reduction, (ii) risk of demand increase, (iii) concentration 

risk and (iv) political risk. The risk criteria consist of two or three indicators each, the sources for which 

include the scientific literature, reports and various databases. These data include global sums for the 

material flows, descriptions of the technical properties of each element, country-specific production 

tonnages and appraisals at the company and country levels in political and social matters. The risk of 

supply being unable to match demand due to supply reduction is estimated using three indicators: the 

static reach of the reserves, the static reach of the resources and, as a risk-reducing factor, the end-of-

life recycling rate of the element. The supply risk due to demand increase is made up of the indicators: 

by-product dependence in the primary production of the element, estimated future technology 

demand and lack of substitutability. The concentration risk is calculated using both the country 

concentration and the company concentration, meaning the tendency for formation of monopolies 

and cartels. The political risk is estimated by the indicators political stability, so-called policy perception 

and the risk of introduction of further regulatory measures (all in the producing countries, where 

mining, smelting or refining happen). The selection of indicators is based on an analysis of existing 

supply risk assessments (Achzet and Helbig, 2013; Tuma et al., 2014). The Supplementary Material 

(Tables S1, S2) also contains more detailed descriptions of each indicator, information on the 

calculation and normalization of the indicator-specific “score”, or rating, and data sources for the origin 

and application of such indicators in previous studies. Similarly, the normalisation of each indicator 

onto a common scale of 0 (lowest supply risk) to 100 (highest supply risk) is carried out in the same 
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way as presented in our previous article on thin-film photovoltaic supply risks (Helbig et al., 2016) Note, 

again, that these “final” numbers are relative supply risk scores, i. e. they are only to be compared with 

other supply risk scores derived in the context of this article. They are not estimates of the absolute 

likelihood of supply being unable to meet demand within a specific risk scenario. 

 

Figure 2: Supply risk criteria and indicators used for the supply risk assessment, after (Tuma et al., 2014). 

In order to weight the four risk criteria and the eleven indicators for the specific case of lithium-ion 

batteries ten international experts were asked to participate in an Analytic Hierarchy Process (AHP) 

(Saaty, 2008). AHP is a well-established method for solving multi-criteria decision problems based on 

pairwise comparisons of evaluation criteria. The AHP questionnaire sent to the experts and more 

details on the experts’ background is given in the Supplementary Material (Figure S1 to S3) and the 

results, namely, the weighted supply risk scores, are given in Section 4 below. These are then subject 

to a sensitivity analysis for each of the ten elements, in which they are compared with the scores from 

two alternative weightings: “criteria weighting”, in which all four risk criteria are weighted equally and 

“equal weighting”, in which all eleven indicators are given the same weight. 

The choice of indicators also determines the time-scale on which the perceived supply risk is 

considered to pertain. Some indicators refer to the present or to the very recent past, e.g. end-of-life 

recycling rate, by-product dependence or those indicators characterising political risk. Others, such as 

the static reaches or the future technology demand, extend at least for several decades into the future. 

The result of the present analysis is thus a determination of supply risk on a short to medium term 

basis. If, for instance, current mineral prices were also to be used as an indicator then the overall 

assessment would be anchored more strongly in the present - depending of course on the weighting 

given to it in the AHP procedure.  

In a second step we determine the supply risk score on the so-called technology level, i.e. for each of 

the six different battery types listed in Table 1, by aggregating the results for the individual elements. 
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Four possibilities were identified in our previous work on photovoltaic materials (Helbig et al., 2016): 

the simple arithmetic mean, the arithmetic mean with mass-share weighting, the arithmetic mean with 

cost-share weighting and the “maximum” approach. For the simple arithmetic mean, each element 

has the same weighting for the calculation. Mass-share weighting considers each element according 

to the contribution of its mass; cost-share weighting takes into account both its mass and the raw 

material costs. The maximum method considers only the element with the highest supply risk score. 

In order to determine the supply risks with mass-share weighting and cost-share weighting it is 

necessary to know the material composition for each battery technology. We have used the data from 

Peters and Weil (Peters and Weil, 2016) based on various life cycle inventories (Bauer, 2010; Ellingsen 

et al., 2014; Majeau-Bettez et al., 2011; Notter et al., 2010; Zackrisson et al., 2010), complemented by 

data from Lu et al. (Lu et al., 2016) for LCO-C. Raw material costs are taken from the “BGR DERA 

Preismonitor” (DERA, 2016) and are listed in the Supplementary Material (Table S20). The sensitivity 

analysis is subsequently applied to the aggregated supply risks on the technology level, as in the case 

of the ten elements.  

The last step in the procedure is to perform Monte Carlo-based simulations in order to determine the 

effect of uncertainty distributions in the input data used. More details are given in the Supplementary 

Material (Table S21). The result is a so-called box plot demonstrating the possible overlap of supply 

risk scores (Figure 7 and Figure S7).  

4. Results 

4.1 Supply risk data 

As explained in the previous section, the supply risk assessment starts with the determination of the 

values of all eleven indicators for each of the ten elements under consideration. It is not necessary at 

this point to describe or discuss the physical or chemical properties of these elements. We simply note 

that eight of the elements are metals; phosphorous and graphite (carbon) are non-metals. In the 

periodic table, Ti, Mn, Fe, Co, Ni and Cu are all first-row transition metals. Li is the lightest alkali metal; 

Al is a so-called post-transition metal. Except for lithium and cobalt (see below), most of the elements 

are mined in their own right. Further, we recall that mining activity is often reported in terms of 

tonnage of the corresponding mineral or ore: Al is mined as bauxite, P as phosphate, Ti as ilmenite or 

rutile (USGS, 2016). Table 2 gives a summary of the indicator values, or supply risk scores, in the units 

as calculated. More details and explanatory notes can be found in the Supplementary Material (Table 

S3 to S18). Since most of these materials are either mass-produced with high tonnages or their 

extraction is already subject to political scrutiny (cobalt, for example, is considered as a “conflict 
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mineral” (Cunningham, 2014)), information on production figures, as well as on reserve and resource 

estimates are readily available (USGS, 2016). 

Table 2: Supply risk indicators on the elemental level before normalization. For explanations of the indicators and further 
information on assumptions concerning the data, see Supplementary Material (Table S3 to S18). ⊕: Higher figures 

indicate higher risk. ⊖: Lower figures indicate higher risk. 

Indicator Dimension Risk Li Al Ti Mn Fe Co Ni Cu C P/PO4 

Static Reach  
Reserves 

years ⊖ 431a 102a 130a 34a 26a 57a 31a 39a 193a 309a 

Static Reach  
Resources 

years ⊖ 1252a 201a 328a >200a 69a 1169a 51a 303a 672a 1300a 

EoL-Recycling Rate % ⊖ 1% 60% 1% 53% 67% 68% 58% 53% 0% 0% 

By-Product  
Dependence 

% ⊕ 52% 
(K) 

0% 0% 3% 1% 85% 
(Ni, Cu) 

2% 9% 0% 0% 

Future Technology 
Demand 

% ⊕ 390% 0% 0% 0% 0% 90% 0% 0% 0% 0% 

Substitutability qualitative ⊖ 59 56 37 4 43 46 38 30 28 3 

Country  
Concentration 

HHI ⊕ 3195 3244 862 1818 2562 2808 1126 1666 4579 2563 

Company  
Concentration 

HHI ⊕ 1664 2221 1317 1357 837 1902 1191 1108 4760 2239 

WGI_PV qualitative ⊖ 0.59 -0.17 -0.07 -0.01 -0.01 -1.13 -0.10 0.03 -0.50 -0.36 

PPI qualitative ⊖ 79 60 57 57 61 51 56 66 49 55 

HDI qualitative ⊕ 0.86 0.76 0.71 0.73 0.79 0.59 0.75 0.77 0.72 0.74 

 

4.1.1 Risk of supply reduction 

The static reaches of the reserves of the ten elements range from low values of 26 years for iron and 

31 years for nickel to 309 years for phosphate and 431 years for lithium. Nickel and iron also have the 

lowest values for the static reach of the resources (51 years and 69 years, respectively), with Li, Co and 

P showing values above 1000 years. As we have noted in our previous article (Helbig et al., 2016), static 

reaches give a measure of both the market pressure for further mineral prospecting and of subsequent 

mining activity, not of actual physical depletion. End-of-Life recycling rates are above 50% for Al, Mn, 

Fe, Co, Ni and Cu. On the other hand, the recycling rates for lithium, titanium, graphite and phosphate 

are negligible. While lithium has its main applications in batteries as well as in ceramics and glasses, 

titanium is mainly used as a white pigment in the form of titanium dioxide. Graphite is an important 

material for electrodes and refractories; phosphorous is a key fertilizer and also feedstock in the 

chemical industry (European Commission, 2014; Graedel et al., 2015). All of these applications are 

either dissipative or produce irrecoverable waste streams (Ciacci et al., 2015). 

4.1.2 Risk of demand increase 

Among the ten elements evaluated, by-product dependence is only a problem for lithium (about half 

of the extracted tonnage is a by-product in potassium production) and cobalt (which is a by-product of 

Ni and Cu). All other elements show values below 10% by-product dependence. As mentioned in 

Section 2, Marscheider-Weidemann and colleagues (Marscheider-Weidemann et al., 2016) have 
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recently updated a previous study on future technology demand (Angerer et al., 2009) and estimated 

the requirements for key materials in 42 identified future technologies in 2035. In our set of ten 

elements, a substantial future demand was only identified for lithium and cobalt with growths of 390% 

and 90%, respectively, compared to production in 2013 (Marscheider-Weidemann et al., 2016). An 

increase in use of the eight other elements for rapidly evolving future technologies could occur as well, 

but not on a large scale. The ease of substitutability of manganese has been rated very low, as there is 

no other metal available with the same metallurgical properties. Phosphorous is an essential fertilizer 

for which there is no substitute. Interestingly, the highest overall level of substitutability (i.e. in all 

applications, not only batteries) among the ten elements is shown by lithium, since there are other 

elements available as active materials for rechargeable and primary batteries as well as for ceramics, 

glasses and lubricating greases (Graedel et al., 2015). 

4.1.3 Concentration risk 

Market concentration is measured at the company level as well as at the national level. On the 

Herfindahl-Hirschman-Index (HHI) scale ranging from 0 to 10000 the country-based concentration of 

production is low for titanium (HHI 862) and nickel (HHI 1126) (USGS, 2016). The highest country 

concentration is observed for graphite (HHI 4579) which is mainly produced in China (USGS, 2016). 

Graphite also has the highest company concentration with an HHI of 4760 (Buchholz et al., 2015). Iron, 

copper and nickel have low concentration values around HHI 1000 (Buchholz et al., 2015). 

4.1.4 Political risk 

Political risk is determined by an evaluation of political stability in producing countries according to 

three distinct categories: stability, the perception of policy towards mining and the possibility of 

stronger regulation. As lithium is primarily produced in Australia and Chile (USGS, 2016), two rather 

stable and mining-friendly countries, this metal has the highest scores for the Worldwide Governance 

Indicators, the Policy Perception Index and the Human Development Index. In contrast, about half the 

global production of cobalt is located in the Democratic Republic of the Congo (USGS, 2016), which 

receives low evaluation scores for all three indicators. 

4.2 Normalization & weighting 

As described in our previous papers (Helbig et al., 2016; Tuma et al., 2014), the next step is to normalize 

the values of each indicator to a common scale and then to apply the weighting for the specific case of 

lithium-ion batteries. The supply risk scores for the eleven indicators for each of the ten elements 

following the normalization are shown in Table S18 of the Supplementary Material. Figure 3 shows the 

same data in the form of a diagram. High values up to 100 indicate high supply risk. The range of values 

obtained after normalization in the two categories concentration risk and political risk is narrow. In the 
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categories risk of supply reduction and risk of demand increase, values for the ten elements can differ 

by more than 50 points on the 0 – 100 on the supply risk scale. 

Lithium has the highest supply risk with respect to the Human Development Index and future 

technology demand. Cobalt has the highest supply risk for the Worldwide Governance Indicators and 

the by-product dependence. Iron has the shortest static reach for reserves, nickel the shortest static 

reach for resources. The elements lithium, titanium, graphite and phosphorous are not recycled at all. 

Substitutability is lowest for manganese and phosphorous. Graphite has the highest country 

concentration, the highest company concentration and the highest risk from the viewpoint of the 

Policy Perception Index. For both static reaches, the by-product dependence and the future technology 

demand, several elements show no risks at all. Cobalt has the highest end-of-life recycling rate and 

Human Development Index scores. Lithium has the highest substitutability value, and the highest 

Worldwide Governance Indicator and Policy Perception Index scores. Titanium has the lowest country 

concentration and iron the lowest company concentration. 

 

Figure 3: Supply risk values for all eleven indicators and all ten elements after normalization. 

The analysis of the results from the questionnaires in the Analytic Hierarchy Process (AHP) leads to a 

weighting of the eleven indicators. Ten invited experts participated in the weighting process and were 

asked to consider specifically the situation of Li-ion battery technologies. The consistency ratio of the 

mean evaluation of all experts results in values below the threshold, so that the resulting weightings 

can be used. The results are shown in Table 3. The highest single indicator weighting was assigned to 

substitutability (14.2%), just ahead of future technology demand (14.1%). Country concentration 

(13.0%) and political stability (11.2%) also received above-average weightings. The lowest weighting 
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was assigned by the experts to the by-product dependence (3.9%) and to the remaining two indicators 

in the political risk category: policy perception (5.2%) and regulation risk (5.3%). 

Table 3: Indicator weighting according to the expert-based Analytic Hierarchy Process (AHP). For details of the AHP, see 
Supplementary Material (Figure S1 to S3). 

Criterion Indicator Weighting 

Risk of Supply Reduction Static Reach Reserves 8.9% 
 Static Reach Resources 5.2% 
 End-of-Life Recycling Rate 9.2% 
Risk of Demand Increase By-Product Dependence 3.9% 
 Future Technology Demand 14.1% 
 Substitutability 14.2% 
Concentration Risk Country Concentration 9.7% 
 Company Concentration 13.0% 
Political Risk Political Stability 11.2% 
 Policy Perception 5.2% 
 Regulation 5.3% 

 

4.3 Supply risk on the elemental level 

Following normalization and weighting, the aggregation of the indicator values give the relative supply 

risk scores for each of the ten elements (Li, Al, Ti, Mn, Fe, Co, Ni, Cu, C and P), as shown in Figure 4. 

Lithium and cobalt (both 54 – we refer to these as “points”) have the highest supply risk scores. 

Aluminium shows the lowest (39 points) followed by the second lowest, titanium (43 points). The latter 

both have zero supply risk associated with the static reach for reserves, the static reach for resources, 

the by-product dependence and the future technology demand, which explains the low overall supply 

risk. They share these four scores with phosphorous (which has very high supply risk scores for 

recycling and substitutability). The high score for lithium emerges from a lack of end-of-life recycling, 

the high future technology demand and the regulation risk. The high supply risk score of cobalt, in 

contrast, results from the by-product dependence and the high risk from political instability. Copper 

(48 points), iron (49 points), nickel (50 points), graphite, manganese (both 52 points) and phosphorous 

(53 points) form the middle group. 

Other options such as equal weighting, criteria weighting, or the application of the weightings of the 

previous AHP analysis from thin-film photovoltaics (Helbig et al., 2016) show a similar pattern with 

only slight differences. For both equal weighting and criteria weighting, cobalt would be the element 

with the highest supply risk; nickel would have a higher supply risk than manganese and phosphorous. 

We will retain the weightings from the present AHP analysis here in the main article. The sensitivity 

analysis in the Supplementary Material (Figure S4 to S6) shows the alternative results for these other 

weighting options. 
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Figure 4: Elemental supply risks after aggregation of all indicators to a single value using the AHP-determined weightings. 

4.4 Supply risk aggregation on the technology level 

In order to compare the results for different battery types, supply risk scores on the elemental level 

need to be aggregated to give comparative supply risks on the technology level. The results for the six 

technologies and ten elements are shown in Figure 5. In the case of the simple arithmetic mean, four 

technologies (LCO-C, LMC-C, NCA-C, NMC-C) have the same highest supply risk score of 50 points, LFP-

C has 49 points and the lowest supply risk score is determined for LFP-LTO with 48 points. The narrow 

range obtained for this aggregation option is partly due to the fact that Li (active material, electrolyte), 

Al (cathode current collector) and P (electrolyte) are common to all technologies. Graphite and Cu are 

included in all technologies except LFP-LTO; Co is contained in three technologies; Ti is only used in 

LFP-LTO. 

When the mass-share approach is applied, the spread of values is somewhat greater. The highest 

supply risk is obtained for NMC-C (50 points) and the lowest supply risk again for LFP-LTO (45 points). 

In this approach, the impact of lithium on the supply risk evaluation is reduced due to its low specific 

mass. It accounts for 6.5% of the mass in LFP-LTO, but only 1.3% in LMO-C. Instead, Cu and graphite, 

which often make up more than a quarter of the mass, become of above-average importance. The 

same is true for Fe (in the case of LFP-based batteries) and for the transition metals in the active 

material (Ni for NCA, Mn for LMO, Ti for LTO). 

In the case of the cost-share approach, the importance of lithium increases due to high specific costs. 

Iron and phosphorous are in contrast associated with low costs. In case of LFP-LTO, lithium makes up 

72% of the material costs of the ten elements. Cobalt makes up more than two thirds of the material 
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costs for LCO-C, copper more than half for LMO-C. Overall, this leads to LCO-C having the highest supply 

risk score (53 points) and LMO-C the lowest (49 points).  

The fourth aggregation method is the maximum approach, which in this case leads to the same supply 

risk score for all technologies, since lithium has the highest relative supply risk (54 points) of all ten 

elements and is essential for all of them. 

 

Figure 5: Contribution of each material to the technology-level supply risk score. Results from different aggregation 
procedures. Arithmetic mean: each element has same weighting. ‘‘Mass-share” aggregation: elements are weighted 
according to their mass share in the battery. ‘‘Cost-share” aggregation: elements are weighted according to their raw 
material cost share. ‘‘Maximum” weighting: the element with highest supply risk determines the supply risk for the 

technology. 

A wider range, or spread, in the supply risk scores is achieved if the elements used in all of the 

technologies (Li, Al, P) are removed from the analysis. Figure 6 thus shows the results if only Ti, Mn, 

Fe, Co, Ni, Cu and graphite are assessed. In this case, the order of technologies in the simple arithmetic 

mean option is preserved, with LCO-C, LMO-C, NCA-C and NMC-C having the highest supply risk of 51 

points and LFP-LTO having the lowest with 46 points. In the mass-share approach, the highest supply 

risk is observed for LCO-C with 51 points; LFP-LTO has 45 points. In the case of cost-share aggregation, 

LCO-C has the highest supply risk with 53 points; LFP-LTO also has the lowest supply risk of 43 points 

(because of the exclusion of Li from the assessment). The largest difference compared to the 

evaluation of all ten elements is observed for the maximum aggregation approach, where Co with 54 

points gives rise to highest supply risk in LCO-C, NCA-C and NMC-C. Note that LFP-LTO has the lowest 

supply risk score in all aggregation options, when the elements Li, Al and P are removed from the 

assessment. 
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Figure 6: Contribution of each material (without Li, Al, P) to the technology-level supply risk score. Results from different 
aggregation procedures. Arithmetic mean: each element has same weighting. ‘‘Mass-share” aggregation: elements are 
weighted according to their mass share in the battery. ‘‘Cost-share” aggregation: elements are weighted according to 

their raw material cost share. ‘‘Maximum” weighting: the element with highest supply risk determines the supply risk for 
the technology. 

4.5 Uncertainty analysis 

Most data used for the assessment of supply risk on both the element and technology levels are subject 

to uncertainty. All data sources are therefore assumed to be characterised with distributions over data 

type and quality, for which details are listed in the Supplementary Material (Table S21). We have 

performed a Monte Carlo simulation with 10000 instances of random-number generation on both 

assessment levels. The results are shown in the box plot of Figure 7, as a statistical summary (mean, 

median, quartiles, and outliers). The interquartile ranges are usually below five supply risk points, on 

both the element and technology levels. It can be seen that for some element pairs, e.g. Li and Co, the 

uncertainty range (25th percentile to 75th percentile) is higher than the difference in mean value, and 

it would therefore not be justified to identify one of the elements as having a “higher” supply risk. In 

contrast, on the lower end of the supply risk scale, Al and Ti remain as the elements with the lowest 

relative supply risk, despite the assumed distributions. On the technology level, despite the generally 

lower interquartile ranges (e.g., often only 2 points in the case of the simple arithmetic mean), the 

small differences in the mean values of the six technologies again lead to overlaps of the quartile boxes 

and therefore in a similar way it would not be possible to conclude that there is – in statistical terms – 

a “higher” supply risk for one technology compared to another. 
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Figure 7: Results of the Monte Carlo simulation with 10000 instances to estimate the uncertainty of the supply risk both 
on the (A) elemental and (B) technology levels. Arithmetic mean (AM): each element has same weighting. ‘‘Mass-share” 

(MS) aggregation: elements are weighted according to their mass share in the battery. ‘‘Cost-share” (CS) aggregation: 
elements are weighted according to their raw material cost share. ‘‘Maximum” (Max) weighting: the element with 

highest supply risk determines the supply risk for the technology. Details concerning the estimated data uncertainty are 
listed in the Supplementary Material (Table S21). 

5. Discussion 

We first consider the data at the elemental level. It is immediately apparent that for the ten elements, 

the range, or spread, of supply risk values is narrower (Figure 4) than in the case of thin film 

photovoltaic materials (Helbig et al., 2016). For the seven metals considered in that paper, the supply 

risk scores range from 48 points (Cu) to 73 points (In), whereas for the ten battery elements in the 

present work, the corresponding values are 39 points (Al) and 54 points (Li and Co). They thus lie within 

a rather narrow band of just 15 supply risk points on a scale from 0 to 100. (Note that Cu, the only 

element common to both the present study and the work on photovoltaics materials, has the same 

supply risk score of 48 points in each, despite the somewhat different weightings of the indicators.) In 

the present case, Al and Ti both have zero supply risk associated with the static reach for reserves, the 

static reach for resources, the by-product dependence and the future technology demand, which 

explains the low overall supply risk. They share these four scores with phosphorous which, on the other 

hand, has very high supply risk scores for recycling and substitutability. The relatively high score for 

lithium emerges from a lack of end-of-life recycling, a high future technology demand and the 

regulation risk. The relatively high supply risk score for cobalt, in contrast, results from the by-product 

dependence and the high risk from political instability. The aggregate scores for the metals fall in a 
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relatively narrow range, although the contributory individual supply risks that are decisive in each case 

are of different origin. This appears to be coincidence rather than due to some anomaly of the method. 

One reason for the much wider range of supply risk scores in the case of the thin film photovoltaic 

materials was the rather high individual scores for In and Ga. Indium, in particular, has low static 

reaches and a low end of life recycling rate; it is a by-product, and there is a high policy perception risk. 

A similar, “critical” metal is not present amongst the ten battery metals, a fact which may bode well 

for the future availability of materials for lithium-ion batteries! However, it is an important result of 

the present evaluation that lithium and cobalt have the highest supply risk among the evaluated ten 

elements. Thus a general recommendation resulting from our assessment would be to continue the 

development of Li-ion technologies in order to decrease the material intensity (g/Wh) for Li and 

perhaps to avoid Co-containing batteries as far as possible, which goes along with earlier 

recommendations (Simon et al., 2015). Recent fears that cobalt might soon be labelled as a so-called 

conflict mineral (Amnesty International, 2016) could lead to a political risk that is higher than that 

calculated in the present assessment. 

The first observation to be made from the results at the technology level is that most of the supply risk 

scores are found in a relatively narrow range. This is particularly the case for the “simple arithmetic 

mean” and “mass share” techniques. The rather narrow band of just 15 supply risk points at the 

elemental level naturally limits the range, or spread, of results at the technology level, particularly 

since the aggregation algorithms are all some form of weighted average and the result will not lie 

outside the range between the lowest and the highest supply risk on the elemental level. This effect is 

actually stronger when more than one battery type contains the same element. (As noted above, the 

supply risk range at the elemental level in our previous study of PV materials was 25 points; the two 

technologies require different elements. The difference in supply risk score was 5 points: CdTe scored 

57 points and CIGS 62 points using the simple arithmetic mean aggregation (Helbig et al., 2016).) 

Considering first the simple arithmetic mean, the supply risk scores for the six technologies are found 

to be 50 points for each of the four battery types LCO-C, LMO-C, NCA-C, NMC-C, 49 for LFP-C and 48 

points for LFP-LTO (Figure 5). Using the uncertainty analysis (Figure 7), this allows us to conclude that 

there is – compared to the first five battery types – a statistically significant lower supply risk associated 

with the LFP-LTO battery. The range of supply risk values widens somewhat when the three elements 

lithium, carbon (graphite) and phosphorous are removed from the analysis (Figure 6). The values are 

then 51, 51, 51, 51, 49 and 46 points for LCO-C, LMO-C, NCA-C, NMC-C, LFP-C and LFP-LTO, respectively. 

Contrary to expectation, however, LFP-LTO remains the only technology for which a statistically 

significant lower supply risk exists compared to the other five technologies. This means that despite 

the lower score for LFP-C there is an overlap between its box in Figure 7 and those of the first four 

technologies because of the larger uncertainty. The mass-share aggregation method and the 
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“maximum” approach give similar results. The cost share aggregation option with and without Li, C 

and P, gives, however, scores of 53, 49, 51, 52, 52 and 51 points; and 53, 49, 51, 51, 48 and 43 points, 

respectively, for the six battery types. In this case we conclude that here the reduction from ten to 

seven elements makes a measurable difference to the relative supply risks. There is a statistically 

significant higher supply risk associated with the LCO-C battery type compared to LMO-C, LFP-C and 

LFP-LTO using the reduced set of seven elements and the cost share aggregation approach. The 

differences associated with the removal of the three elements from the analysis are in general, 

however, not large. 

Some comments on the methodology are probably also necessary at this point. Firstly, the present 

analysis has not been quite as successful at the technology level as originally hoped, partly because of 

the strong bunching of supply risk values at the elemental level, at least in comparison to our previous 

work on photovoltaic materials. Other factors notwithstanding we should emphasise that the rigid, but 

correct, application of the uncertainty analysis plays an important role in this result. The present results 

show several examples where differences in supply risk are established at the technology level, but 

these are not regarded as being statistically significant. More accurate and better compiled source 

data, as well as improvements in the methodology may, in the course of time, improve this situation. 

Secondly, for the three aggregation options arithmetic mean, mass-share and cost-share, there is a 

compensatory effect in the supply risk assessment: Using more of a material with a low supply risk 

score or, alternatively, using other, different materials with a low supply risk score, lowers the supply 

risk estimated for the whole technology. This may be explained by realising that supply risk is also a 

measure of the likelihood of price rises. The first three aggregation options assess the additional effort 

that must be expended in order to counteract possible supply disruption. The amount of effort is 

clearly lower if the high-risk materials have a lower mass share, or lower cost share in the technology 

concerned. The cost-share approach is the most comprehensive of the three, as it contains the 

information also required for the arithmetic mean and mass-share approaches. Finally, the 

“maximum” approach involves a different perception of supply risk that focuses on the likelihood of a 

severe physical shortage, which is particularly an issue for materials with high market concentration 

risk. In the case of a severe physical shortage, supply has already (been) stopped and the battery 

cannot be manufactured. Increasing the complexity of a technology by adding another functional 

material then always leads to more possibilities for supply disruption and therefore to a supply risk 

that is at least as high as the supply risk of a technology containing fewer elements. Two concepts 

closely connected with supply risk – cost increase and physical shortage – can thus be evaluated by 

cost-share aggregation and the maximum approach, respectively. 
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6. Conclusions 

 Using the scheme employed with some success for the materials in thin film photovoltaic devices 

(Helbig et al., 2016), we have evaluated in a comparative study the supply risks associated with lithium-

ion battery materials.The lithium-ion technologies investigated are lithium cobalt oxide, lithium 

manganese oxide, nickel-manganese-cobalt, nickel-cobalt-aluminium, lithium iron phosphate and 

lithium iron phosphate with titanium oxide anode. In the first five cases the anodes consist of graphite. 

These battery types are normally designated LCO-C, LMO-C, NCA-C, NMC-C, LFP-C and LFP-LTO, 

respectively, and contain the ten functional materials Li, Al, Ti, Fe, Mn, Co, Ni, Cu, C, P, whereby carbon 

actually refers to natural graphite. In the first stage of the analysis we apply the semi-quantitative, 

comparative assessment scheme to evaluate the supply risks associated with the ten elements. Eleven 

different indicators in four supply risk categories, namely, “risk of supply reduction”, “risk of demand 

increase”, “concentration risk” and “political risk” are applied to each element; the weighting of the 

indicators is determined by external experts within the framework of an Analytic Hierarchy Process. 

The aggregation of the weighted, normalised indicator values gives a set of relative supply risk values 

on the elemental level on a scale of 0-100. Lithium and cobalt have the highest supply risk scores. 

Aluminium shows the lowest (39 points) followed by titanium (43 points). Copper, iron, nickel, 

graphite, manganese and phosphorous form the middle group. The range of supply risk scores is 

narrower than for the seven elements compared in our study of the materials for thin film 

photovoltaics. An uncertainty analysis has been used to compare supply risk values both at the 

elemental and technology levels. 

In the second stage of the analysis we assess the six battery types, in order to determine the 

comparative supply risks at the technology level. For this purpose the elemental supply risk values are 

aggregated using four different methods, three of which are based on the (weighted) arithmetic mean. 

Due to the somewhat restrictive situation at the elemental level the supply risk values for all four 

methods also occur in narrow ranges. Using the uncertainty analysis for the “simple arithmetic mean” 

case, it is concluded that – compared to the other five battery types – the LFP-LTO battery has a 

statistically significant lower supply risk both with and without the three elements Li, Al and P (the 

latter are present in all batteries). The mass-share aggregation method gives similar results. For the 

cost share aggregation option, on the other hand, the reduction from ten to seven elements does 

cause a measurable difference in the relative supply risks. There is a statistically significant higher 

supply risk associated with the LCO-C battery type compared to LMO-C, LFP-C and LFP-LTO based on 

the reduced set of seven elements and only one aggregation method. 

Further, we show that the differences in supply risk values caused by removing Li, Al and P from the 

analysis are, in general, not large, which is again a consequence of the narrow band of values at the 
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elemental level. All the battery types considered are also characterized by a similar level of supply risk. 

Switching to another battery technology does not help reduce these risks, with the  exception of LFP-

LTO which shows a statistically significant reduction in supply risk for the first three aggregation 

procedures compared to the other technologies. This result comes about, however, at the cost of 

reduced energy density.Concerning statistical significance, we note that the rigorous use of the 

uncertainty analysis in our assessment procedure sets stringent conditions for establishing differences 

in relative supply risk. The two other important results, namely, that the highest risk values are 

obtained for cobalt and lithium at the elemental level and for LCO-C at the technology level, do lead 

to a practical recommendation: It would be wise to continue, even intensify, research and 

development on Li-ion technologies in order to decrease the Li material intensity (g/Wh). Moreover, it 

is probably advisable to avoid using cobalt-containing batteries where possible. In addition, we also 

note the ethical question that has been posed in connection with the extraction and export of cobalt 

minerals from conflict regions. Measures such as Section 1502 Dodd-Frank Act and the corresponding 

EU legislation can obviously affect supply risk. This is already reflected in the political risk indicators, 

but the situation could rapidly worsen. 

Future research can also address the issue of increasing the applicability of the assessment procedure 

to specific market conditions, e.g. if high market concentration leads to a high risk of severe physical 

shortages, or, if the technology price is highly dependent on the raw material price, to a stronger focus 

on price risks Finally, research on improvement of the quality of the source data and, possibly, on 

further development of the methodology is also required, in order to ease the restrictions imposed by 

the uncertainty analysis. 
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