English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Reduced mu power in response to unusual actions is context-dependent in 1-year-olds

MPS-Authors
/persons/resource/persons203093

Langeloh,  Miriam
Max Planck Research Group Early Social Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Psychology, University of Heidelberg, Germany;

Matthes,  Daniel
Max Planck Research Group Early Social Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19727

Hoehl,  Stefanie
Max Planck Research Group Early Social Cognition, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Faculty of Psychology, University Vienna, Austria;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Langeloh, M., Buttelmann, D., Matthes, D., Grassmann, S., Pauen, S., & Hoehl, S. (2018). Reduced mu power in response to unusual actions is context-dependent in 1-year-olds. Frontiers in Psychology, 9: 36. doi:10.3389/fpsyg.2018.00036.


Cite as: https://hdl.handle.net/21.11116/0000-0000-8144-1
Abstract
During social interactions infants predict and evaluate other people’s actions. Previous behavioral research found that infants’ imitation of others’ actions depends on these evaluations and is context-dependent: 1-year-olds predominantly imitated an unusual action (turning on a lamp with one’s forehead) when the model’s hands were free compared to when the model’s hands were occupied or restrained. In the present study, we adapted this behavioral paradigm to a neurophysiological study measuring infants’ brain activity while observing usual and unusual actions via electroencephalography. In particular, we measured differences in mu power (6 – 8 Hz) associated with motor activation. In a between-subjects design, 12- to 14-month-old infants watched videos of adult models demonstrating that their hands were either free or restrained. Subsequent test frames showed the models turning on a lamp or a soundbox by using their head or their hand. Results in the hands-free condition revealed that 12- to 14-month-olds displayed a reduction of mu power in frontal regions in response to unusual and thus unexpected actions (head touch) compared to usual and expected actions (hand touch). This may be explained by increased motor activation required for updating prior action predictions in response to unusual actions though alternative explanations in terms of general attention or cognitive control processes may also be considered. In the hands-restrained condition, responses in mu frequency band did not differ between action outcomes. This implies that unusual head-touch actions compared to hand-touch actions do not necessarily evoke a reduction of mu power. Thus, we conclude that reduction of mu frequency power is context-dependent during infants’ action perception. Our results are interpreted in terms of motor system activity measured via changes in mu frequency band as being one important neural mechanism involved in action prediction and evaluation from early on.