English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Constraints on models of human survey estimation: evidence from a learning study

MPS-Authors
/persons/resource/persons84081

Meilinger,  T
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Social & Spatial Cognition, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192752

Rebane,  J
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84072

Mallot,  HA
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Meilinger, T., Rebane, J., Henson, A., Bülthoff, H., & Mallot, H. (2016). Constraints on models of human survey estimation: evidence from a learning study. Talk presented at International Workshop on Models and Representations in Spatial Cognition. Delmenhorst, Germany.


Cite as: https://hdl.handle.net/21.11116/0000-0000-7D16-C
Abstract
Survey estimates such as pointing, straight line distance estimation, or finding novel shortcuts to distant locations are common tasks. Although involved reference frames and brain areas were examined the underlying processing is widely unknown. We examined the development of survey knowledge with experience to tap into the underlying processes. Participants learned a simple multi-corridor layout by walking forwards and backwards through a virtual environment. Throughout learning, participants were repeatedly asked to perform in pairwise pointing from each segment border to each other segment border. Pointing latency increased with pointing distance and decreased with pointing experience, rather than learning experience. From this realization, we conclude that participants did not access an encoded representation when performing survey tasks, but instead performed an on-the-fly construction of the estimates which was quicker for nearby goals and quickened with repeated construction, but not with learning of the underlying elements. This could relate to successive firing of place cells representing locations along a route from the current location to the target, or the construction of a mental model of non-visible object locations. Furthermore, participants made systematic errors in pointing, for example, mixed up turns or forgot segments. Modelling of underlying representations based on different error sources suggests that participants did not create one unified representation when internally constructing the experimental environment. But instead, they constructed a unique representation at least for each orientation the environment was navigated. There was no indication that this separation changed with experience. We conclude that survey estimates are conducted on-the-fly and are based on multiple representational units.