Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Vortrag

Understanding Complex Neural Network Computations

MPG-Autoren
/persons/resource/persons83805

Bethge,  M
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bethge, M. (2016). Understanding Complex Neural Network Computations. Talk presented at AREADNE 2016: Research in Encoding And Decoding of Neural Ensembles. Santorini, Greece.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-7CBA-4
Zusammenfassung
The recent breakthrough in deep learning has led to a rapid explosion in the evolution of artificial neural networks that successfully perform complex computations such as object recognition or semantic image segmentation. Unlike in the past, the complexity of these networks seems essential for their success and cannot easily be replaced by much simpler architectures. In trying to understand how deep neural networks achieve robust perceptual interpretations of sensory stimuli, we face similar questions as we do in neuroscience even though their full connectome is known and it is easy to obtain the responses of all its neurons to arbitrary stimuli. How can we obtain precise descriptions of neural responses without relying on the specifics of implementation? Can we characterize the knowledge that such networks have acquired about the world and how it is represented? I will present recent results from my lab on assessing the meaning of neural representations in high-performing convolutional neural networks. More generally, I will argue that the rise of deep neural networks offers a particular chance for computational neuroscience to advance its concepts and tools for understanding complex computational neural systems, and I am hoping to spark stimulating discussions on how we could use this opportunity.