English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Unlocking neural population non-stationarity using a hierarchical dynamics model

MPS-Authors
/persons/resource/persons214725

Park,  M
Former Research Group Neural Computation and Behaviour, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84066

Macke,  J
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Center of Advanced European Studies and Research (caesar), Max Planck Society;
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Park, M., Bohner, G., & Macke, J. (2016). Unlocking neural population non-stationarity using a hierarchical dynamics model. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, R. Garnett, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 28 (pp. 145-153). Red Hook, NY, USA: Curran.


Cite as: https://hdl.handle.net/21.11116/0000-0000-7AB8-8
Abstract
Neural population activity often exhibits rich variability. This variability is thought to arise from single-neuron stochasticity, neural dynamics on short time-scales, as well as from modulations of neural firing properties on long time-scales, often referred to as non-stationarity. To better understand the nature of co-variability in neural circuits and their impact on cortical information processing, we introduce a hierarchical dynamics model that is able to capture inter-trial modulations in firing rates, as well as neural population dynamics. We derive an algorithm for Bayesian Laplace propagation for fast posterior inference, and demonstrate that our model provides a better account of the structure of neural firing than existing stationary dynamics models, when applied to neural population recordings from primary visual cortex.