Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Obstacle Detection, Tracking and Avoidance for a Teleoperated UAV

MPG-Autoren
/persons/resource/persons192619

Odelga,  M
Project group: Autonomous Robotics & Human-Machine Systems, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Project group: Cybernetics Approach to Perception & Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons133440

Stegagno,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Autonomous Robotics & Human-Machine Systems, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Odelga, M., Bülthoff, H., & Stegagno, P. (2016). Obstacle Detection, Tracking and Avoidance for a Teleoperated UAV. In IEEE International Conference on Robotics and Automation (ICRA 2016) (pp. 2984-2990). Piscataway, NJ, USA: IEEE.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-7A9E-6
Zusammenfassung
In this paper, we present a collision-free indoor navigation algorithm for teleoperated multirotor Unmanned Aerial Vehicles (UAVs). Assuming an obstacle rich environment, the algorithm keeps track of detected obstacles in the local surroundings of the robot. The detection part of the algorithm is based on measurements from an RGB-D camera and a Bin-Occupancy filter capable of tracking an unspecified number of targets. We use the estimate of the robot’s velocity to update the obstacles state when they leave the direct field of view of the sensor. The avoidance part of the algorithm is based on the Model Predictive Control approach. By predicting the possible future obstacles states, it filters the operator commands to prevent collisions. The method is validated on a platform equipped with its own computational unit, which makes it selfsufficient in terms of external CPUs.