English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints

MPS-Authors
/persons/resource/persons192846

Yüksel,  B
Project group: Autonomous Robotics & Human-Machine Systems, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83915

Franchi,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yüksel, B., Buondonno, G., & Franchi, A. (2016). Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016) (pp. 561-566). Piscataway, NJ, USA: IEEE.


Cite as: https://hdl.handle.net/21.11116/0000-0000-7A66-5
Abstract
In this paper we introduce a particularly relevant class of aerial manipulators that we name protocentric. These robots are formed by an underactuated aerial vehicle, a planar-Vertical Take-Off and Landing (PVTOL), equipped with any number of different parallel manipulator arms with the only property that all the first joints are attached at the Center of Mass (CoM) of the PVTOL, while the center of actuation of the PVTOL can be anywhere. We prove that protocentric aerial manipulators (PAMs) are differentially flat systems regardless the number of joints of each arm and their kinematic and dynamic parameters. The set of flat outputs is constituted by the CoM of the PVTOL and the absolute orientation angles of all the links. The relative degree of each output is equal to four. More amazingly, we prove that PAMs are differentially flat even in the case that any number of the joints are elastic, no matter the internal distribution between elastic and rigid joints. The set of flat outputs is the same but in this case the total relative degree grows quadratically with the number of elastic joints. We validate the theory by simulating object grasping and transportation tasks with unknown mass and parameters and using a controller based on dynamic feedback linearization.