Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Trait means, trait plasticity and trait differences to other species jointly explain species performances in grasslands of varying diversity

MPG-Autoren
/persons/resource/persons62549

Schulze,  Ernst Detlef
Emeritus Group, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Roscher, C., Gubsch, M., Lipowsky, A., Schumacher, J., Weigelt, A., Buchmann, N., et al. (2018). Trait means, trait plasticity and trait differences to other species jointly explain species performances in grasslands of varying diversity. Oikos, 127(6), 855-865. doi:10.1111/oik.04815.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-6E6C-D
Zusammenfassung
Functional traits may help to explain the great variety of species performances in plant communities, but it is not clear whether the magnitude of trait values of a focal species or trait differences to co-occurring species are key for trait-based predictions. In addition, trait expression within species is often plastic, but this variation has been widely neglected in trait-based analyses. We studied functional traits and plant biomass of 59 species in 66 experimental grassland mixtures of varying species richness (Jena Experiment). We related mean species performances (species biomass and relative yield RY) and their plasticities along the diversity gradient to trait-based pedictors involving mean species traits (Tmean), trait plasticities along the diversity gradient (Tslope), extents of trait variation across communities (TCV; coefficient of variation) and hierarchical differences (Tdiff) and trait distances (absolute values of trait differences Tdist) between focal and co-occurring species. Tmean (30–55%) and Tdiff (30–33%) explained most variation in mean species performances and their plasticities, but Tslope (20–25%) was also important in explaining mean species performances. The mean species traits and the trait differences between focal species and neighbors with the greatest explanatory power were related to plant size and stature (shoot length, mass:height ratios) and leaf photosynthetic capacity (specific leaf area, stable carbon isotopes and leaf nitrogen concentration). The contribution of trait plasticities in explaining species performances varied in direction (positive or negative) and involved traits related to photosynthetic capacity, nitrogen acquisition (nitrogen concentrations and stable isotopes) as well as structural stability (shoot carbon concentrations). Our results suggest that incorporating plasticity in trait expression as well as trait differences to co-occurring species is critical for extending trait-based analyses to understand the assembly of plant communities and the contribution of individual species in structuring plant communities.