English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Verwey-type charge ordering transition in an open-shell p-electron compound

MPS-Authors
/persons/resource/persons126506

Adler,  Peter
Peter Adler, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons146464

Merz,  Patrick
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons128745

Sans,  Annette
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126670

Jansen,  Martin
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Adler, P., Jeglič, P., Reehuis, M., Geiß, M., Merz, P., Knaflič, T., et al. (2018). Verwey-type charge ordering transition in an open-shell p-electron compound. Science Advances, 4(1): eaap7581, pp. 1-7. doi:10.1126/sciadv.aap7581.


Cite as: https://hdl.handle.net/21.11116/0000-0000-31E4-7
Abstract
The Verwey transition in Fe3O4, a complex structural phase transition concomitant with a jump in electrical conductivity by two orders of magnitude, has been a benchmark for charge ordering (CO) phenomena in mixed-valence transition metal materials. CO is of central importance, because it frequently competes with functional properties such as superconductivity or metallic ferromagnetism. However, the CO state in Fe3O4 turned out to be complex, and the mechanism of the Verwey transition remains controversial. We demonstrate an archetypical Verwey-type transition in an open p-shell anionic mixed-valence compound using complementary diffraction and spectroscopic techniques. In Cs4O6, a phase change from a cubic structure with a single crystallographic site for the molecular O2x- building units to a tetragonal structure with ordered superoxide O2- and peroxide O22- entities is accompanied by a drastic drop in electronic conductivity and molecular charge fluctuation rates. The simple CO pattern of molecular units and the lack of magnetic order suggest Cs4O6 as a model system for disentangling the complex interplay of charge, lattice, orbital, and spin degrees of freedom in Verwey-type CO processes.