English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quantitative optical nanophysiology of Ca2+ signaling at inner hair cell active zones.

MPS-Authors
/persons/resource/persons185962

Neef,  J.
Research Group of Synaptic Nanophysiology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons39413

Urban,  N. T.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15210

Hell,  S. W.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons16030

Willig,  K. I.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15548

Moser,  T.
Research Group of Synaptic Nanophysiology, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2526187.pdf
(Publisher version), 4MB

Supplementary Material (public)

2526187_Suppl.pdf
(Supplementary material), 3MB

Citation

Neef, J., Urban, N. T., Ohn, T. L., Frank, T., Jean, P., Hell, S. W., et al. (2018). Quantitative optical nanophysiology of Ca2+ signaling at inner hair cell active zones. Nature Communications, 9: 290. doi:10.1038/s41467-017-02612-y.


Cite as: https://hdl.handle.net/21.11116/0000-0000-300A-F
Abstract
Ca2+ influx triggers the release of synaptic vesicles at the presynaptic active zone (AZ). A quantitative characterization of presynaptic Ca2+ signaling is critical for understanding synaptic transmission. However, this has remained challenging to establish at the required resolution. Here, we employ confocal and stimulated emission depletion (STED) microscopy to quantify the number (20–330) and arrangement (mostly linear 70 nm × 100–600 nm clusters) of Ca2+ channels at AZs of mouse cochlear inner hair cells (IHCs). Establishing STED Ca2+ imaging, we analyze presynaptic Ca2+ signals at the nanometer scale and find confined elongated Ca2+ domains at normal IHC AZs, whereas Ca2+ domains are spatially spread out at the AZs of bassoon-deficient IHCs. Performing 2D-STED fluorescence lifetime analysis, we arrive at estimates of the Ca2+ concentrations at stimulated IHC AZs of on average 25 µM. We propose that IHCs form bassoon-dependent presynaptic Ca2+-channel clusters of similar density but scalable length, thereby varying the number of Ca2+ channels amongst individual AZs.