Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Generation of unipolar half-cycle pulses via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer

MPG-Autoren
/persons/resource/persons216121

Arkhipov,  R. M.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons30820

Morgner,  U.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Arkhipov, M. V., Arkhipov, R. M., Pakhomov, A. V., Babushkin, I. V., Demircan, A., Morgner, U., et al. (2017). Generation of unipolar half-cycle pulses via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer. OPTICS LETTERS, 42(11), 2189-2192. doi:10.1364/OL.42.002189.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-7E74-1
Zusammenfassung
We propose a strikingly simple method to form approximately unipolar half-cycle optical pulses via reflection of a single-cycle optical pulse from a thin flat metallic or dielectric layer. Unipolar pulses in reflection arise due to specifics of one-dimensional pulse propagation. Namely, we show that the field emitted by the layer is proportional to the velocity of the oscillating charges in the medium, instead of their acceleration. Besides, the oscillation velocity of the charges can be forced to keep a constant sign throughout the pulse duration. That is, reflection of ultrashort pulses from broad-area layers with nanometer-scale thickness can be very different from the common reflection in the case of longer pulses and thicker layers. This suggests a possibility of unusual transformations of few-cycle light pulses in completely linear optical systems. (C) 2017 Optical Society of America