Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons

MPG-Autoren
/persons/resource/persons216196

Koettig,  F.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201209

Tani,  F.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201215

Travers,  J. C.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;
Heriot Watt Univ, Sch Engn & Phys Sci;

/persons/resource/persons201171

Russell,  P. St. J.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Koettig, F., Tani, F., Travers, J. C., & Russell, P. S. J. (2017). PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons. PHYSICAL REVIEW LETTERS, 118(26): 263902. doi:10.1103/PhysRevLett.118.263902.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-7F96-9
Zusammenfassung
We identify a novel regime of soliton-plasma interactions in which high-intensity ultrashort pulses of intermediate soliton order undergo coherent plasma-induced fission. Experimental results obtained in gas-filled hollow-core photonic crystal fiber are supported by rigorous numerical simulations. In the anomalous dispersion regime, the cumulative blueshift of higher-order input solitons with ionizing intensities results in pulse splitting before the ultimate self-compression point, leading to the generation of robust pulse pairs with PHz bandwidths. The novel dynamics closes the gap between plasma-induced adiabatic soliton compression and modulational instability.