Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Photon bunching reveals single-electron cathodoluminescence excitation efficiency in InGaN quantum wells

MPG-Autoren
/persons/resource/persons201113

Latzel,  Michael
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201040

Christiansen,  Silke
Christiansen Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Meuret, S., Coenen, T., Zeijlemaker, H., Latzel, M., Christiansen, S., Conesa-Boj, S., et al. (2017). Photon bunching reveals single-electron cathodoluminescence excitation efficiency in InGaN quantum wells. PHYSICAL REVIEW B, 96(3): 035308. doi:10.1103/PhysRevB.96.035308.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-87EB-F
Zusammenfassung
Cathodoluminescence spectroscopy is a key analysis technique in nanophotonics research and technology, yet many aspects of its fundamental excitation mechanisms are not well understood on the single-electron and single-photon level. Here, we determine the cathodoluminescence emission statistics of InGaN quantum wells embedded in GaN under 6-30-keV electron excitation and find that the light emission rate varies strongly from electron to electron. Strong photon bunching is observed for the InGaN quantum well emission at 2.77 eV due to the generation of multiple quantum well excitations by a single primary electron. The bunching effect, measured by the g((2))(t) autocorrelation function, decreases with increasing beam current in the range 3-350 pA. Under pulsed excitation (p = 2-100 ns; 0.13-6 electrons per pulse), the bunching effect strongly increases. A model based on Monte Carlo simulations is developed that assumes a fraction gamma of the primary electrons generates electron-hole pairs that create multiple photons in the quantum wells. At a fixed primary electron energy (10 keV) the model explains all g(2) measurements for different beam currents and pulse durations using a single value for gamma= 0.5. At lower energies, when electrons cause mostly near-surface excitations, gamma is reduced (gamma = 0.01 at 6 keV), which is explained by the presence of a AlGaN barrier layer that inhibits carrier diffusion to the buried quantum wells. The combination of g((2)) measurements in pulsed and continuous mode with spectral analysis provides a powerful tool to study optoelectronic properties and may find application in many other optically active systems and devices.