Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

General Linearized Theory of Quantum Fluctuations around Arbitrary Limit Cycles

MPG-Autoren
/persons/resource/persons61068

Navarrete-Benlloch,  Carlos
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons216179

Weiss,  Talitha
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons216340

Walter,  Stefan
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Navarrete-Benlloch, C., Weiss, T., Walter, S., & de Valcarcel, G. J. (2017). General Linearized Theory of Quantum Fluctuations around Arbitrary Limit Cycles. PHYSICAL REVIEW LETTERS, 119(13): 133601. doi:10.1103/PhysRevLett.119.133601.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-859F-7
Zusammenfassung
The theory of Gaussian quantum fluctuations around classical steady states in nonlinear quantum-optical systems (also known as standard linearization) is a cornerstone for the analysis of such systems. Its simplicity, together with its accuracy far from critical points or situations where the nonlinearity reaches the strong coupling regime, has turned it into a widespread technique, being the first method of choice in most works on the subject. However, such a technique finds strong practical and conceptual complications when one tries to apply it to situations in which the classical long-time solution is time dependent, a most prominent example being spontaneous limit-cycle formation. Here, we introduce a linearization scheme adapted to such situations, using the driven Van der Pol oscillator as a test bed for the method, which allows us to compare it with full numerical simulations. On a conceptual level, the scheme relies on the connection between the emergence of limit cycles and the spontaneous breaking of the symmetry under temporal translations. On the practical side, the method keeps the simplicity and linear scaling with the size of the problem (number of modes) characteristic of standard linearization, making it applicable to large (many-body) systems.