Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Progress toward optimal quantum tomography with unbalanced homodyning

MPG-Autoren
/persons/resource/persons201174

Sanchez-Soto,  L. L.
Quantumness, Tomography, Entanglement, and Codes, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;
Univ Complutense, Fac Fis, Dept Opt, Complutense University of Madrid;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Teo, Y. S., Jeong, H., & Sanchez-Soto, L. L. (2017). Progress toward optimal quantum tomography with unbalanced homodyning. PHYSICAL REVIEW A, 96(4): 042333. doi:10.1103/PhysRevA.96.042333.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-8024-6
Zusammenfassung
Balanced homodyning, heterodyning, and unbalanced homodyning are three well-known sampling techniques used in quantum optics to characterize photonic sources in the continuous-variable regime. We show that for all quantum states and all observable-parameter tomography schemes, which includes reconstructions of arbitrary operator moments and phase-space quasidistributions, localized sampling with unbalanced homodyning is always tomographically more powerful (gives more accurate estimators) than delocalized sampling with heterodyning. The latter is recently known to often give more accurate parameter reconstructions than conventional marginalized sampling with balanced homodyning. This result also holds for realistic photodetectors with subunit efficiency. With examples from first-through fourth-moment tomography, we demonstrate that unbalanced homodyning can outperform balanced homodyning when heterodyning fails to do so. This new benchmark takes us one step towards optimal continuous-variable tomography with conventional photodetectors and minimal experimental components.