Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Fundamental precision limit of a Mach-Zehnder interferometric sensor when one of the inputs is the vacuum

MPG-Autoren
/persons/resource/persons201192

Seshadreesan,  Kaushik P.
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Takeoka, M., Seshadreesan, K. P., You, C., Izumi, S., & Dowling, J. P. (2017). Fundamental precision limit of a Mach-Zehnder interferometric sensor when one of the inputs is the vacuum. PHYSICAL REVIEW A, 96(5): 052118. doi:10.1103/PhysRevA.96.052118.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-8016-6
Zusammenfassung
In the lore of quantum metrology, one often hears (or reads) the following no-go theorem: If you put a vacuum into one input port of a balanced Mach-Zehnder interferometer, then no matter what you put into the other input port, and nomatter what your detection scheme, the sensitivity can never be better than the shot-noise limit (SNL). Often the proof of this theorem is cited to be inC. Caves, Phys. Rev. D23, 1693 (1981), but upon further inspection, no such claim is made there. Quantum-Fisher-information-based arguments suggestive of this no-go theorem appear elsewhere in the literature, but are not stated in their full generality. Here we thoroughly explore this no-go theorem and give a rigorous statement: the no-go theorem holds whenever the unknown phase shift is split between both of the arms of the interferometer, but remarkably does not hold when only one arm has the unknown phase shift. In the latter scenario, we provide an explicit measurement strategy that beats the SNL. We also point out that these two scenarios are physically different and correspond to different types of sensing applications.