Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Coherent control of flexural vibrations in dual-nanoweb fibers using phase-modulated two-frequency light

MPG-Autoren
/persons/resource/persons201108

Koehler,  J. R.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201142

Noskov,  R. E.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons216336

Sukhorukov,  A. A.
Guests, Max Planck Institute for the Science of Light, Max Planck Society;
Australian National University, Res Sch Phys & Engn, Nonlinear Phys Ctr;

/persons/resource/persons201143

Novoa,  D.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201171

Russell,  P. St. J.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Koehler, J. R., Noskov, R. E., Sukhorukov, A. A., Novoa, D., & Russell, P. S. J. (2017). Coherent control of flexural vibrations in dual-nanoweb fibers using phase-modulated two-frequency light. PHYSICAL REVIEW A, 96(6): 063822. doi:10.1103/PhysRevA.96.063822.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-85AC-8
Zusammenfassung
Coherent control of the resonant response in spatially extended optomechanical structures is complicated by the fact that the optical drive is affected by the backaction from the generated phonons. Here we report an approach to coherent control based on stimulated Raman-like scattering, in which the optical pressure can remain unaffected by the induced vibrations even in the regime of strong optomechanical interactions. We demonstrate experimentally coherent control of flexural vibrations simultaneously along the whole length of a dual-nanoweb fiber, by imprinting steps in the relative phase between the components of a two-frequency pump signal, the beat frequency being chosen to match a flexural resonance. Furthermore, sequential switching of the relative phase at time intervals shorter than the lifetime of the vibrations reduces their amplitude to a constant value that is fully adjustable by tuning the phase modulation depth and switching rate. The results may trigger new developments in silicon photonics, since such coherent control uniquely decouples the amplitude of optomechanical oscillations from power-dependent thermal effects and nonlinear optical loss.