Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Role of Composition of Uniform and Highly Dispersed Cobalt Vanadium Iron Spinel Nanocrystals for Oxygen Electrocatalysis

MPG-Autoren
/persons/resource/persons41515

Lunkenbein,  Thomas
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons134632

Masliuk,  Liudmyla
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Max-Planck-Institut für Chemische Energiekonversion;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chakrapani, K., Bendt, G., Hajiyani, H., Lunkenbein, T., Greiner, M. T., Masliuk, L., et al. (2018). The Role of Composition of Uniform and Highly Dispersed Cobalt Vanadium Iron Spinel Nanocrystals for Oxygen Electrocatalysis. ACS Catalysis, 8(2), 1259-1267. doi:10.1021/acscatal.7b03529.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-9CD0-5
Zusammenfassung
Cation substitution in transition metal oxides is an important approach to improve electrocatalysts by the optimization of their composition. Herein, we report on phase-pure spinel-type CoV2-xFexO4 nanoparticles with 0 ≤ x ≤ 2 as a new class of bi-functional catalysts for the oxygen evolution (OER) and oxygen reduction reactions (ORR). The mixed-metal oxide catalysts exhibit high catalytic activity for both OER and ORR that strongly depends on the V and Fe content. CoV2O4 is known to exhibit a high conductivity, while in CoFe2O4 the cobalt cation distribution is expected to change due to the inversion of the spinel structure. The optimised catalyst, CoV1.5Fe0.5O4, shows an overpotential for OER of ~300 mV for 10 mA cm-2 with a Tafel slope of 38 mV dec-1 in alkaline electrolyte. DFT+U+SOC calculations on cation ordering confirm the tendency towards the inverse spinel structure with increasing Fe concentration in CoV2-xFexO4 that starts to dominate already at low Fe contents. The theoretical results also show that the variation of oxidation states are related to the surface region, where the redox activity was found experimentally to be manifested in the transformation of V3+ → V2+. The high catalytic activity, facile synthesis, and low cost of the CoV2-xFexO4 nanoparticles render them very promising for application in bifunctional electrocatalysis.