English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

OH reactivity of the urban air in Helsinki, Finland, during winter

MPS-Authors
/persons/resource/persons207351

Pfannerstill,  Eva Y.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101364

Williams,  Jonathan
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Praplan, A. P., Pfannerstill, E. Y., Williams, J., & Hellen, H. (2017). OH reactivity of the urban air in Helsinki, Finland, during winter. Atmospheric Environment, 169, 150-161. doi:10.1016/j.atmosenv.2017.09.013.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-9610-B
Abstract
A new instrument to measure total OH reactivity in ambient air based on the Comparative Reactivity Method (CRM) has been built and characterized at the Finnish Meteorological Institute in Helsinki, Finland. The system is based on the detection of pyrrole by a gas chromatograph with a photoionization detector and designed for long term studies. It was tested in a container close to the SMEAR III semi-urban station in Helsinki during the winter in February 2016. The sampling location next to the delivery area of the institute was influenced by local vehicle emissions and cannot be considered representative of background conditions in Helsinki. However, effects of nitrogen oxides on the measurements could be investigated there. During this campaign, 56 compounds were measured individually by 1) an in-situ gas chromatograph coupled to a mass spectrometer (GC/MS) and by 2) off-line sampling in canisters and on adsorbent filled cartridges taken at the container and subsequently analysed by GC-FID and liquid chromatography, respectively. In addition, nitrogen oxides were measured at the same location, while ozone, carbon monoxide and sulfur dioxide concentrations have been retrieved from the SMEAR III mast data. The comparison between the total OH reactivity measured and the OH reactivity derived from individual compound measurements are in better agreement for lower reactivity levels. Possible explanations for the differences are discussed in detail.