English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Epithelial calcineurin controls microbiota-dependent intestinal tumor development

MPS-Authors

Peuker,  Kenneth
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons82474

Wang,  Jun
Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56786

Künzel,  Sven
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56580

Baines,  John F.
Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Peuker, K., Muff, S., Wang, J., Künzel, S., Bosse, E., Zeissig, Y., et al. (2016). Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nature Medicine, 22(5), 506. doi:10.1038/nm.4072https://www.nature.com/articles/nm.4072supplementary-information.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-9023-D
Abstract
Inflammation-associated pathways are active in intestinal epithelial cells (IECs) and contribute to the pathogenesis of colorectal cancer (CRC). Calcineurin, a phosphatase required for the activation of the nuclear factor of activated T cells (NFAT) family of transcription factors, shows increased expression in CRC. We therefore investigated the role of calcineurin in intestinal tumor development. We demonstrate that calcineurin and NFAT factors are constitutively expressed by primary IECs and selectively activated in intestinal tumors as a result of impaired stratification of the tumor-associated microbiota and toll-like receptor signaling. Epithelial calcineurin supports the survival and proliferation of cancer stem cells in an NFAT-dependent manner and promotes the development of intestinal tumors in mice. Moreover, somatic mutations that have been identified in human CRC are associated with constitutive activation of calcineurin, whereas nuclear translocation of NFAT is associated with increased death from CRC. These findings highlight an epithelial cell–intrinsic pathway that integrates signals derived from the commensal microbiota to promote intestinal tumor development.