English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The Space Confinement Approach Using Hollow Graphitic Spheres to Unveil Activity and Stability of Pt-Co Nanocatalysts for PEMFC

MPS-Authors
/persons/resource/persons198542

Knossalla,  Johannes
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58985

Schüth,  Ferdi
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pizzutilo, E., Knossalla, J., Geiger, S., Grote, J.-P., Polymeros, G., Baldizzone, C., et al. (2017). The Space Confinement Approach Using Hollow Graphitic Spheres to Unveil Activity and Stability of Pt-Co Nanocatalysts for PEMFC. Advanced Energy Materials, 7(20): 1700835. doi:10.1002/aenm.201700835.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-80A6-6
Abstract
The performance of polymer electrolyte fuel cells is strongly correlated to the electrocatalytic activity and stability. In particular, the latter is the result of an interplay between different degradation mechanisms. The essential high stability, demanded for real applications, requires the synthesis of advanced electrocatalysts that withstand the harsh operation conditions. In the first part of this study, the synthesis of oxygen reduction electrocatalysts consisting of Pt-Co (i.e., Pt5Co, Pt3Co, and PtCo) alloyed nanoparticles encapsulated in the mesoporous shell of hollow graphitic spheres (HGS) is reported. The mass activities of the activated catalysts depend on the initial alloy composition and an activity increase on the order of two to threefold, compared to pure Pt@HGS, is achieved. The key point of the second part is the investigation of the degradation of PtCo@HGS (showing the highest activity). Thanks to pore confinement, the impact of dissolution/dealloying and carbon corrosion can be studied without the interplay of other degradation mechanisms that would induce a substantial change in the particle size distribution. Therefore, impact of the upper potential limit and the scan rates on the dealloying and electrochemical surface area evolution can be examined in detail.