Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ligand Exchange on and Allylic C−H Activation by Iron(0) Fragments: π‑Complexes, Allyliron Species, and Metallacycles

MPG-Autoren
/persons/resource/persons138649

Casitas,  Alicia
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58718

Krause,  Helga
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58631

Lutz,  Sigrid
Research Group Cornellà, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58578

Goddard,  Richard
Service Department Lehmann (EMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58380

Fürstner,  Alois
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

[372]SI.pdf
(Ergänzendes Material), 2MB

Zitation

Casitas, A., Krause, H., Lutz, S., Goddard, R., Bill, E., & Fürstner, A. (2018). Ligand Exchange on and Allylic C−H Activation by Iron(0) Fragments: π‑Complexes, Allyliron Species, and Metallacycles. Organometallics, 37(5), 729-739. doi:10.1021/acs.organomet.7b00571.


Zitierlink: https://hdl.handle.net/21.11116/0000-0000-FBC7-5
Zusammenfassung
The complexes [(dippp)Fe(C2H4)2] (2) and [CpFe(C2H4)2][Li·(tmeda)] (5) both contain a formally zerovalent iron center but exhibit markedly different catalytic properties. Whereas 5 is able to induce a broad range of cycloisomerization and cycloaddition reactions, 2 is so far basically limited to cyclotrimerizations of alkynes and nitriles. Investigations into the behaviors of both complex vis-à-vis unsaturated substrates provided insights into the likely origins of this distinct behavior. Thus, ordinary terminal or internal alkenes were found not to replace the ligated ethylene units in 2, whereas the stronger π-acceptor ligands 1,5-cyclooctadiene, 2- norbornene, and tolane afforded the corresponding π-complexes 8, 9, 10, and 13. A cyclopropene derivative engaged in oxidative cyclization with formation of the corresponding metallacycle 12. Allyl-9-BBN or alkenyl-9-BBN derivatives succumbed to allylic C−H activation with formation of the unorthodox allyliron complexes 25 and 27 featuring a bridging hydride ligand between the iron and the boron atoms. Along the same line, 1,3-dienes bind well to 2 but undergo spontaneous activation if allylic C−H bonds are present; the resulting hydride is transferred to a residual ethylene ligand, as manifest in the formation of the cyclopentadienyl ethyl complex 22. The same elementary steps surface in a remarkable reaction cascade comprising two consecutive C−H activation reactions and a stereoselective C−C bond formation, which ultimately provides the substituted cyclohexadienyl complexes 20 and 23. In contrast, the heterobimetallic complex 5 neither induces allylic C−H activation nor binds 1,3-butadiene under conditions where it proved catalytically active. The targeted butadiene complex 34 had to be made by an indirect route and is distinguished by a noteworthy "flyover" constitution. Therefore, we conclude that the known cycloaddition and cycloisomerization reactions catalyzed by 5 do not commence at a 1,3-diene motif but require an enyne entity as starter unit.