English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia

MPS-Authors
/persons/resource/persons62402

Heimann,  Martin
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62457

Lavrič,  Jošt V.
Tall Tower Atmospheric Gas Measurements, Dr. J. Lavrič, Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC2767.pdf
(Publisher version), 3MB

BGC2767D.pdf
(Preprint), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Mikhailov, E. F., Mironova, S., Mironov, G., Vlasenko, S., Panov, A., Chi, X., et al. (2017). Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia. Atmospheric Chemistry and Physics, 17(23), 14365-14392. doi:10.5194/acp-17-14365-2017.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002E-7D95-7
Abstract
We present long-term (5-year) measurements of particulate matter with an upper diameter limit of ∼ 10 µm (PM10), elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC) in aerosol filter samples collected at the Zotino Tall Tower Observatory in the middle-taiga subzone (Siberia). The data are complemented with carbon monoxide (CO) measurements. Air mass back trajectory analysis and satellite image analysis were used to characterise potential source regions and the transport pathway of haze plumes. Polluted and background periods were selected using a non-parametric statistical approach and analysed separately. In addition, near-pristine air masses were selected based on their EC concentrations being below the detection limit of our thermal–optical instrument. Over the entire sampling campaign, 75 and 48 % of air masses in winter and in summer, respectively, and 42 % in spring and fall are classified as polluted. The observed background concentrations of CO and EC showed a sine-like behaviour with a period of 365 ± 4 days, mostly due to different degrees of dilution and the removal of polluted air masses arriving at the Zotino Tall Tower Observatory (ZOTTO) from remote sources. Our analysis of the near-pristine conditions shows that the longest periods with clean air masses were observed in summer, with a frequency of 17 %, while in wintertime only 1 % can be classified as a clean. Against a background of low concentrations of CO, EC, and OC in the near-pristine summertime, it was possible to identify pollution plumes that most likely came from crude-oil production sites located in the oil-rich regions of Western Siberia. Overall, our analysis indicates that most of the time the Siberian region is impacted by atmospheric pollution arising from biomass burning and anthropogenic emissions. A relatively clean atmosphere can be observed mainly in summer, when polluted species are removed by precipitation and the aerosol burden returns to near-pristine conditions.