Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

MEG-measured visually induced gamma-band oscillations in chronic schizophrenia: Evidence for impaired generation of rhythmic activity in ventral stream regions

MPG-Autoren
/persons/resource/persons142010

Rivolta,  D.
Neurophysiology Department, Max Planck Institute for Brain Research, Max Planck Society;

/persons/resource/persons141796

Sauer,  A.
Neurophysiology Department, Max Planck Institute for Brain Research, Max Planck Society;

/persons/resource/persons141798

Singer,  W.
Neurophysiology Department, Max Planck Institute for Brain Research, Max Planck Society;

/persons/resource/persons141808

Wibral,  M.
Neurophysiology Department, Max Planck Institute for Brain Research, Max Planck Society;

/persons/resource/persons141802

Uhlhaas,  P.
Neurophysiology Department, Max Planck Institute for Brain Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Grent-'t-Jong, T., Rivolta, D., Sauer, A., Grube, M., Singer, W., Wibral, M., et al. (2016). MEG-measured visually induced gamma-band oscillations in chronic schizophrenia: Evidence for impaired generation of rhythmic activity in ventral stream regions. Schizophrenia Research, 176(2-3), 177-185.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002E-58EF-E
Zusammenfassung
Background: Gamma-band oscillations are prominently impaired in schizophrenia, but the nature of the deficit and relationship to perceptual processes is unclear. Methods: 16 patients with chronic schizophrenia (ScZ) and 16 age-matched healthy controls completed a visual paradigm while magnetoencephalographic (MEG) data was recorded. Participants had to detect randomly occurring stimulus acceleration while viewing a concentric moving grating. MEG data were analyzed for spectral power (1-100 Hz) at sensor-and source-level to examine the brain regions involved in aberrant rhythmic activity, and for contribution of differences in baseline activity towards the generation of low-and high-frequency power. Results: Our data show reduced gamma-band power at sensor level in schizophrenia patients during stimulus processing while alpha-band and baseline spectrum were intact. Differences in oscillatory activity correlated with reduced behavioral detection rates in the schizophrenia group and higher scores on the "Cognitive Factor" of the Positive and Negative Syndrome Scale. Source reconstruction revealed that extra-striate (fusiform/lingual gyrus), but not striate (cuneus), visual cortices contributed towards the reduced activity observed at sensor-level in ScZ patients. Importantly, differences in stimulus-related activity were not due to differences in baseline activity. Conclusions: Our findings highlight that MEG-measured high-frequency oscillations during visual processing can be robustly identified in ScZ. Our data further suggest impairments that involve dysfunctions in ventral stream processing and a failure to increase gamma-band activity in a task-context. Implications of these findings are discussed in the context of current theories of cortical-subcortical circuit dysfunctions and perceptual processing in ScZ. (C) 2016 Elsevier B.V. All rights reserved.